Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Asymptotic Properties Of Maximum Likelihood Estimators In Diffusion Type Models
Download Asymptotic Properties Of Maximum Likelihood Estimators In Diffusion Type Models full books in PDF, epub, and Kindle. Read online Asymptotic Properties Of Maximum Likelihood Estimators In Diffusion Type Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Parameter Estimation in Stochastic Differential Equations by : Jaya P. N. Bishwal
Download or read book Parameter Estimation in Stochastic Differential Equations written by Jaya P. N. Bishwal and published by Springer. This book was released on 2007-09-26 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.
Book Synopsis Parameter Estimation in Stochastic Volatility Models by : Jaya P. N. Bishwal
Download or read book Parameter Estimation in Stochastic Volatility Models written by Jaya P. N. Bishwal and published by Springer Nature. This book was released on 2022-08-06 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Book Synopsis Identification of Dynamical Systems with Small Noise by : Yury A. Kutoyants
Download or read book Identification of Dynamical Systems with Small Noise written by Yury A. Kutoyants and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small noise is a good noise. In this work, we are interested in the problems of estimation theory concerned with observations of the diffusion-type process Xo = Xo, 0 ~ t ~ T, (0. 1) where W is a standard Wiener process and St(') is some nonanticipative smooth t function. By the observations X = {X , 0 ~ t ~ T} of this process, we will solve some t of the problems of identification, both parametric and nonparametric. If the trend S(-) is known up to the value of some finite-dimensional parameter St(X) = St((}, X), where (} E e c Rd , then we have a parametric case. The nonparametric problems arise if we know only the degree of smoothness of the function St(X), 0 ~ t ~ T with respect to time t. It is supposed that the diffusion coefficient c is always known. In the parametric case, we describe the asymptotical properties of maximum likelihood (MLE), Bayes (BE) and minimum distance (MDE) estimators as c --+ 0 and in the nonparametric situation, we investigate some kernel-type estimators of unknown functions (say, StO,O ~ t ~ T). The asymptotic in such problems of estimation for this scheme of observations was usually considered as T --+ 00 , because this limit is a direct analog to the traditional limit (n --+ 00) in the classical mathematical statistics of i. i. d. observations. The limit c --+ 0 in (0. 1) is interesting for the following reasons.
Book Synopsis Gaussian Random Processes by : I.A. Ibragimov
Download or read book Gaussian Random Processes written by I.A. Ibragimov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a "random process segment" and of finding effective formulas for densities of the equiva lent distributions. Our second problem is to describe the classes of spectral measures corresponding in some sense to regular stationary processes (in par ticular, satisfying the well-known "strong mixing condition") as well as to describe the subclasses associated with "mixing rate". The third problem involves estimation of an unknown mean value of a random process, this random process being stationary except for its mean, i. e. , it is the problem of "distinguishing a signal from stationary noise". Furthermore, we give here auxiliary information (on distributions in Hilbert spaces, properties of sam ple functions, theorems on functions of a complex variable, etc. ). Since 1958 many mathematicians have studied the problem of equivalence of various infinite-dimensional Gaussian distributions (detailed and sys tematic presentation of the basic results can be found, for instance, in [23]). In this book we have considered Gaussian stationary processes and arrived, we believe, at rather definite solutions. The second problem mentioned above is closely related with problems involving ergodic theory of Gaussian dynamic systems as well as prediction theory of stationary processes.
Book Synopsis Statistical Inferences for Stochasic Processes by : Ishwar V. Basawa
Download or read book Statistical Inferences for Stochasic Processes written by Ishwar V. Basawa and published by Elsevier. This book was released on 2014-06-28 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stats Inference Stochasic Process
Book Synopsis Uncertainty And Optimality: Probability, Statistics And Operations Research by : Jagadis Chandra Misra
Download or read book Uncertainty And Optimality: Probability, Statistics And Operations Research written by Jagadis Chandra Misra and published by World Scientific. This book was released on 2002-11-05 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with different modern topics in probability, statistics and operations research. It has been written lucidly in a novel way. Wherever necessary, the theory is explained in great detail, with suitable illustrations. Numerous references are given, so that young researchers who want to start their work in a particular area will benefit immensely from the book.The contributors are distinguished statisticians and operations research experts from all over the world.
Download or read book Probability Models written by and published by Elsevier. This book was released on 2024-10-24 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability Models, Volume 51 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters on Stein's methods, Probabilities and thermodynamics third law, Random Matrix Theory, General tools for understanding fluctuations of random variables, An approximation scheme to compute the Fisher-Rao distance between multivariate normal distributions, Probability Models Applied to Reliability and Availability Engineering, Backward stochastic differential equation– Stochastic optimization theory and viscous solution of HJB equation, and much more.Additional chapters cover Probability Models in Machine Learning, The recursive stochastic algorithm, randomized urn models and response-adaptive randomization in clinical trials, Random matrix theory: local laws and applications, KOO methods and their high-dimensional consistencies in some multivariate models, Fourteen Lectures on Inference for Stochastic Processes, and A multivariate cumulative damage model and some applications. - Provides the latest information on probability models - Offers outstanding and original reviews on a range of probability models research topics - Serves as an indispensable reference for researchers and students alike
Book Synopsis Statistics And Control Of Stochastic Processes: The Liptser Festschrift by : Yu M Kabanov
Download or read book Statistics And Control Of Stochastic Processes: The Liptser Festschrift written by Yu M Kabanov and published by World Scientific. This book was released on 1997-12-04 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains papers presented at the Steklov Seminar on Statistics and Control of Stochastic Processes. For the past three decades, the seminar has determined the development, in a number of important directions, of the theory of random processes not only in the USSR (now Russia) but in the whole world. It was organised by A N Shiryaev in collaboration with N V Krylov and R Sh Liptser. It started off with optimal stopping and filtering with applications to engineering, and very soon extended its interests to more general problems of stochastic control, causal and anticipating stochastic calculus, limit theorems for semimartingales, martingale methods in queueing theory, foundations of statistics of random processes and, in recent years, mathematical finance. Many studies, for example of stochastic PDEs or extended stochastic integrals, anticipated largely Western works.The contributions in this book are devoted to the hottest topics and united by a martingale methodology which was the key idea of the seminar.
Book Synopsis Contemporary Developments in Statistical Theory by : Soumendra Lahiri
Download or read book Contemporary Developments in Statistical Theory written by Soumendra Lahiri and published by Springer Science & Business Media. This book was released on 2013-12-02 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume highlights Prof. Hira Koul’s achievements in many areas of Statistics, including Asymptotic theory of statistical inference, Robustness, Weighted empirical processes and their applications, Survival Analysis, Nonlinear time series and Econometrics, among others. Chapters are all original papers that explore the frontiers of these areas and will assist researchers and graduate students working in Statistics, Econometrics and related areas. Prof. Hira Koul was the first Ph.D. student of Prof. Peter Bickel. His distinguished career in Statistics includes the receipt of many prestigious awards, including the Senior Humbolt award (1995), and dedicated service to the profession through editorial work for journals and through leadership roles in professional societies, notably as the past president of the International Indian Statistical Association. Prof. Hira Koul has graduated close to 30 Ph.D. students, and made several seminal contributions in about 125 innovative research papers. The long list of his distinguished collaborators is represented by the contributors to this volume.
Book Synopsis Handbook of Financial Econometrics by : Yacine Ait-Sahalia
Download or read book Handbook of Financial Econometrics written by Yacine Ait-Sahalia and published by Elsevier. This book was released on 2009-10-19 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections
Book Synopsis Probability, Statistics, and Their Applications by : Rabindra Nath Bhattacharya
Download or read book Probability, Statistics, and Their Applications written by Rabindra Nath Bhattacharya and published by IMS. This book was released on 2003 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Statistical Inference for Ergodic Diffusion Processes by : Yury A. Kutoyants
Download or read book Statistical Inference for Ergodic Diffusion Processes written by Yury A. Kutoyants and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book in inference for stochastic processes from a statistical, rather than a probabilistic, perspective. It provides a systematic exposition of theoretical results from over ten years of mathematical literature and presents, for the first time in book form, many new techniques and approaches.
Book Synopsis Separating Information Maximum Likelihood Method for High-Frequency Financial Data by : Naoto Kunitomo
Download or read book Separating Information Maximum Likelihood Method for High-Frequency Financial Data written by Naoto Kunitomo and published by Springer. This book was released on 2018-06-14 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic explanation of the SIML (Separating Information Maximum Likelihood) method, a new approach to financial econometrics. Considerable interest has been given to the estimation problem of integrated volatility and covariance by using high-frequency financial data. Although several new statistical estimation procedures have been proposed, each method has some desirable properties along with some shortcomings that call for improvement. For estimating integrated volatility, covariance, and the related statistics by using high-frequency financial data, the SIML method has been developed by Kunitomo and Sato to deal with possible micro-market noises. The authors show that the SIML estimator has reasonable finite sample properties as well as asymptotic properties in the standard cases. It is also shown that the SIML estimator has robust properties in the sense that it is consistent and asymptotically normal in the stable convergence sense when there are micro-market noises, micro-market (non-linear) adjustments, and round-off errors with the underlying (continuous time) stochastic process. Simulation results are reported in a systematic way as are some applications of the SIML method to the Nikkei-225 index, derived from the major stock index in Japan and the Japanese financial sector.
Book Synopsis Inference and Asymptotics by : D.R. Cox
Download or read book Inference and Asymptotics written by D.R. Cox and published by Routledge. This book was released on 2017-10-19 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our book Asymptotic Techniquesfor Use in Statistics was originally planned as an account of asymptotic statistical theory, but by the time we had completed the mathematical preliminaries it seemed best to publish these separately. The present book, although largely self-contained, takes up the original theme and gives a systematic account of some recent developments in asymptotic parametric inference from a likelihood-based perspective. Chapters 1-4 are relatively elementary and provide first a review of key concepts such as likelihood, sufficiency, conditionality, ancillarity, exponential families and transformation models. Then first-order asymptotic theory is set out, followed by a discussion of the need for higher-order theory. This is then developed in some generality in Chapters 5-8. A final chapter deals briefly with some more specialized issues. The discussion emphasizes concepts and techniques rather than precise mathematical verifications with full attention to regularity conditions and, especially in the less technical chapters, draws quite heavily on illustrative examples. Each chapter ends with outline further results and exercises and with bibliographic notes. Many parts of the field discussed in this book are undergoing rapid further development, and in those parts the book therefore in some respects has more the flavour of a progress report than an exposition of a largely completed theory.
Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Statistical Inference for Fractional Diffusion Processes by : B. L. S. Prakasa Rao
Download or read book Statistical Inference for Fractional Diffusion Processes written by B. L. S. Prakasa Rao and published by John Wiley & Sons. This book was released on 2011-07-05 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are widely used for model building in the social, physical, engineering and life sciences as well as in financial economics. In model building, statistical inference for stochastic processes is of great importance from both a theoretical and an applications point of view. This book deals with Fractional Diffusion Processes and statistical inference for such stochastic processes. The main focus of the book is to consider parametric and nonparametric inference problems for fractional diffusion processes when a complete path of the process over a finite interval is observable. Key features: Introduces self-similar processes, fractional Brownian motion and stochastic integration with respect to fractional Brownian motion. Provides a comprehensive review of statistical inference for processes driven by fractional Brownian motion for modelling long range dependence. Presents a study of parametric and nonparametric inference problems for the fractional diffusion process. Discusses the fractional Brownian sheet and infinite dimensional fractional Brownian motion. Includes recent results and developments in the area of statistical inference of fractional diffusion processes. Researchers and students working on the statistics of fractional diffusion processes and applied mathematicians and statisticians involved in stochastic process modelling will benefit from this book.
Book Synopsis Statistical Theory and Method Abstracts by :
Download or read book Statistical Theory and Method Abstracts written by and published by . This book was released on 2001 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: