Determinantal Point Processes for Machine Learning

Download Determinantal Point Processes for Machine Learning PDF Online Free

Author :
Publisher : Now Pub
ISBN 13 : 9781601986283
Total Pages : 178 pages
Book Rating : 4.9/5 (862 download)

DOWNLOAD NOW!


Book Synopsis Determinantal Point Processes for Machine Learning by : Alex Kulesza

Download or read book Determinantal Point Processes for Machine Learning written by Alex Kulesza and published by Now Pub. This book was released on 2012-11-29 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a comprehensible introduction to DPPs, focusing on the intuitions, algorithms, and extensions that are most relevant to the machine learning community.

Proceedings of the Forum "Math-for-Industry" 2018

Download Proceedings of the Forum

Author :
Publisher : Springer Nature
ISBN 13 : 9811655766
Total Pages : 191 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the Forum "Math-for-Industry" 2018 by : Jin Cheng

Download or read book Proceedings of the Forum "Math-for-Industry" 2018 written by Jin Cheng and published by Springer Nature. This book was released on 2022-01-01 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes selected technical papers presented at the Forum “Math-for-Industry” 2018. The papers written by eminent researchers and academics working in the area of industrial mathematics from the viewpoint of financial mathematics, machine learning, neural networks, inverse problems, stochastic modelling, etc., discuss how the ingenuity of science, technology, engineering and mathematics are and will be expected to be utilized. This volume focuses on the role that mathematics-for-industry can play in interdisciplinary research to develop new methods. The contents are useful for researchers both in academia and industry working in interdisciplinary sectors.

Handbook of Mixture Analysis

Download Handbook of Mixture Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429508247
Total Pages : 522 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mixture Analysis by : Sylvia Fruhwirth-Schnatter

Download or read book Handbook of Mixture Analysis written by Sylvia Fruhwirth-Schnatter and published by CRC Press. This book was released on 2019-01-04 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features: Provides a comprehensive overview of the methods and applications of mixture modelling and analysis Divided into three parts: Foundations and Methods; Mixture Modelling and Extensions; and Selected Applications Contains many worked examples using real data, together with computational implementation, to illustrate the methods described Includes contributions from the leading researchers in the field The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems.

Bayesian Optimization

Download Bayesian Optimization PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108623557
Total Pages : 376 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Optimization by : Roman Garnett

Download or read book Bayesian Optimization written by Roman Garnett and published by Cambridge University Press. This book was released on 2023-01-31 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian optimization is a methodology for optimizing expensive objective functions that has proven success in the sciences, engineering, and beyond. This timely text provides a self-contained and comprehensive introduction to the subject, starting from scratch and carefully developing all the key ideas along the way. This bottom-up approach illuminates unifying themes in the design of Bayesian optimization algorithms and builds a solid theoretical foundation for approaching novel situations. The core of the book is divided into three main parts, covering theoretical and practical aspects of Gaussian process modeling, the Bayesian approach to sequential decision making, and the realization and computation of practical and effective optimization policies. Following this foundational material, the book provides an overview of theoretical convergence results, a survey of notable extensions, a comprehensive history of Bayesian optimization, and an extensive annotated bibliography of applications.

Machine Learning

Download Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262304325
Total Pages : 1102 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning by : Kevin P. Murphy

Download or read book Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2012-09-07 with total page 1102 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Machine Learning and Knowledge Discovery in Databases

Download Machine Learning and Knowledge Discovery in Databases PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319712497
Total Pages : 898 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Michelangelo Ceci

Download or read book Machine Learning and Knowledge Discovery in Databases written by Michelangelo Ceci and published by Springer. This book was released on 2017-12-29 with total page 898 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track.

Handbook of Environmental and Ecological Statistics

Download Handbook of Environmental and Ecological Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351648543
Total Pages : 798 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Environmental and Ecological Statistics by : Alan E. Gelfand

Download or read book Handbook of Environmental and Ecological Statistics written by Alan E. Gelfand and published by CRC Press. This book was released on 2019-01-15 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes. The 21st century statistics community has become increasingly interdisciplinary, bringing a large collection of modern tools to all areas of application in environmental processes. In addition, the environmental community has substantially increased its scope of data collection including observational data, satellite-derived data, and computer model output. The resultant impact in this latter community has been substantial; no longer are simple regression and analysis of variance methods adequate. The contribution of this handbook is to assemble a state-of-the-art view of this interface. Features: An internationally regarded editorial team. A distinguished collection of contributors. A thoroughly contemporary treatment of a substantial interdisciplinary interface. Written to engage both statisticians as well as quantitative environmental researchers. 34 chapters covering methodology, ecological processes, environmental exposure, and statistical methods in climate science.

Spatial Point Patterns

Download Spatial Point Patterns PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482210215
Total Pages : 830 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Spatial Point Patterns by : Adrian Baddeley

Download or read book Spatial Point Patterns written by Adrian Baddeley and published by CRC Press. This book was released on 2015-11-11 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th

Statistical Inference and Simulation for Spatial Point Processes

Download Statistical Inference and Simulation for Spatial Point Processes PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780203496930
Total Pages : 320 pages
Book Rating : 4.4/5 (969 download)

DOWNLOAD NOW!


Book Synopsis Statistical Inference and Simulation for Spatial Point Processes by : Jesper Moller

Download or read book Statistical Inference and Simulation for Spatial Point Processes written by Jesper Moller and published by CRC Press. This book was released on 2003-09-25 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.

Computer Vision – ECCV 2018

Download Computer Vision – ECCV 2018 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030012190
Total Pages : 891 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision – ECCV 2018 by : Vittorio Ferrari

Download or read book Computer Vision – ECCV 2018 written by Vittorio Ferrari and published by Springer. This book was released on 2018-10-06 with total page 891 pages. Available in PDF, EPUB and Kindle. Book excerpt: The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.

Kernel Mean Embedding of Distributions

Download Kernel Mean Embedding of Distributions PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680832884
Total Pages : 154 pages
Book Rating : 4.8/5 (328 download)

DOWNLOAD NOW!


Book Synopsis Kernel Mean Embedding of Distributions by : Krikamol Muandet

Download or read book Kernel Mean Embedding of Distributions written by Krikamol Muandet and published by . This book was released on 2017-06-28 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive review of kernel mean embeddings of distributions and, in the course of doing so, discusses some challenging issues that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics.

Search Result Diversification

Download Search Result Diversification PDF Online Free

Author :
Publisher : Now Publishers
ISBN 13 : 9781680830002
Total Pages : 108 pages
Book Rating : 4.8/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Search Result Diversification by : Santos Rodrygo L T

Download or read book Search Result Diversification written by Santos Rodrygo L T and published by Now Publishers. This book was released on 2015-02-27 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer reviews the published literature on search result diversification. In particular, it discusses the motivations for diversifying the search results for an ambiguous query and provides a formal definition of the search result diversification problem. In addition, it describes the most successful approaches in the literature for producing and evaluating diversity in multiple search domains.

Mathematics and Computation

Download Mathematics and Computation PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691189137
Total Pages : 434 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Mathematics and Computation by : Avi Wigderson

Download or read book Mathematics and Computation written by Avi Wigderson and published by Princeton University Press. This book was released on 2019-10-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Gaussian Processes for Machine Learning

Download Gaussian Processes for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026218253X
Total Pages : 266 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen

Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Tensor Methods in Statistics

Download Tensor Methods in Statistics PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486832694
Total Pages : 308 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Tensor Methods in Statistics by : Peter McCullagh

Download or read book Tensor Methods in Statistics written by Peter McCullagh and published by Courier Dover Publications. This book was released on 2018-07-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: A pioneering monograph on tensor methods applied to distributional problems arising in statistics, this work begins with the study of multivariate moments and cumulants. An invaluable reference for graduate students and professional statisticians. 1987 edition.

Efficient Reinforcement Learning Using Gaussian Processes

Download Efficient Reinforcement Learning Using Gaussian Processes PDF Online Free

Author :
Publisher : KIT Scientific Publishing
ISBN 13 : 3866445695
Total Pages : 226 pages
Book Rating : 4.8/5 (664 download)

DOWNLOAD NOW!


Book Synopsis Efficient Reinforcement Learning Using Gaussian Processes by : Marc Peter Deisenroth

Download or read book Efficient Reinforcement Learning Using Gaussian Processes written by Marc Peter Deisenroth and published by KIT Scientific Publishing. This book was released on 2010 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.

An Introduction to the Theory of Point Processes

Download An Introduction to the Theory of Point Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387215646
Total Pages : 487 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Theory of Point Processes by : D.J. Daley

Download or read book An Introduction to the Theory of Point Processes written by D.J. Daley and published by Springer Science & Business Media. This book was released on 2006-04-10 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.