Analysis for Diffusion Processes on Riemannian Manifolds

Download Analysis for Diffusion Processes on Riemannian Manifolds PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814452653
Total Pages : 392 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Analysis for Diffusion Processes on Riemannian Manifolds by : Feng-Yu Wang

Download or read book Analysis for Diffusion Processes on Riemannian Manifolds written by Feng-Yu Wang and published by World Scientific. This book was released on 2014 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.

Diffusion Processes and Related Problems in Analysis, Volume II

Download Diffusion Processes and Related Problems in Analysis, Volume II PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461203899
Total Pages : 344 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Diffusion Processes and Related Problems in Analysis, Volume II by : V. Wihstutz

Download or read book Diffusion Processes and Related Problems in Analysis, Volume II written by V. Wihstutz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.

Stochastic Analysis on Manifolds

Download Stochastic Analysis on Manifolds PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821808028
Total Pages : 297 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Analysis on Manifolds by : Elton P. Hsu

Download or read book Stochastic Analysis on Manifolds written by Elton P. Hsu and published by American Mathematical Soc.. This book was released on 2002 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mainly from the perspective of a probabilist, Hsu shows how stochastic analysis and differential geometry can work together for their mutual benefit. He writes for researchers and advanced graduate students with a firm foundation in basic euclidean stochastic analysis, and differential geometry. He does not include the exercises usual to such texts, but does provide proofs throughout that invite readers to test their understanding. Annotation copyrighted by Book News Inc., Portland, OR.

Harnack Inequalities for Stochastic Partial Differential Equations

Download Harnack Inequalities for Stochastic Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461479347
Total Pages : 135 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Harnack Inequalities for Stochastic Partial Differential Equations by : Feng-Yu Wang

Download or read book Harnack Inequalities for Stochastic Partial Differential Equations written by Feng-Yu Wang and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​In this book the author presents a self-contained account of Harnack inequalities and applications for the semigroup of solutions to stochastic partial and delayed differential equations. Since the semigroup refers to Fokker-Planck equations on infinite-dimensional spaces, the Harnack inequalities the author investigates are dimension-free. This is an essentially different point from the above mentioned classical Harnack inequalities. Moreover, the main tool in the study is a new coupling method (called coupling by change of measures) rather than the usual maximum principle in the current literature.

An Introduction to the Analysis of Paths on a Riemannian Manifold

Download An Introduction to the Analysis of Paths on a Riemannian Manifold PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821838393
Total Pages : 290 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Analysis of Paths on a Riemannian Manifold by : Daniel W. Stroock

Download or read book An Introduction to the Analysis of Paths on a Riemannian Manifold written by Daniel W. Stroock and published by American Mathematical Soc.. This book was released on 2000 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hoping to make the text more accessible to readers not schooled in the probabalistic tradition, Stroock (affiliation unspecified) emphasizes the geometric over the stochastic analysis of differential manifolds. Chapters deconstruct Brownian paths, diffusions in Euclidean space, intrinsic and extrinsic Riemannian geometry, Bocher's identity, and the bundle of orthonormal frames. The volume humbly concludes with an "admission of defeat" in regard to recovering the Li-Yau basic differential inequality. Annotation copyrighted by Book News, Inc., Portland, OR.

On the Geometry of Diffusion Operators and Stochastic Flows

Download On the Geometry of Diffusion Operators and Stochastic Flows PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540470220
Total Pages : 121 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis On the Geometry of Diffusion Operators and Stochastic Flows by : K.D. Elworthy

Download or read book On the Geometry of Diffusion Operators and Stochastic Flows written by K.D. Elworthy and published by Springer. This book was released on 2007-01-05 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic differential equations, and Hoermander form representations of diffusion operators, can determine a linear connection associated to the underlying (sub)-Riemannian structure. This is systematically described, together with its invariants, and then exploited to discuss qualitative properties of stochastic flows, and analysis on path spaces of compact manifolds with diffusion measures. This should be useful to stochastic analysts, especially those with interests in stochastic flows, infinite dimensional analysis, or geometric analysis, and also to researchers in sub-Riemannian geometry. A basic background in differential geometry is assumed, but the construction of the connections is very direct and itself gives an intuitive and concrete introduction. Knowledge of stochastic analysis is also assumed for later chapters.

Stochastic Partial Differential Equations and Related Fields

Download Stochastic Partial Differential Equations and Related Fields PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319749293
Total Pages : 565 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Partial Differential Equations and Related Fields by : Andreas Eberle

Download or read book Stochastic Partial Differential Equations and Related Fields written by Andreas Eberle and published by Springer. This book was released on 2018-07-03 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.

New Trends in Stochastic Analysis and Related Topics

Download New Trends in Stochastic Analysis and Related Topics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814360910
Total Pages : 458 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis New Trends in Stochastic Analysis and Related Topics by : Huaizhong Zhao

Download or read book New Trends in Stochastic Analysis and Related Topics written by Huaizhong Zhao and published by World Scientific. This book was released on 2012 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.

Probability Towards 2000

Download Probability Towards 2000 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461222249
Total Pages : 370 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Probability Towards 2000 by : L. Accardi

Download or read book Probability Towards 2000 written by L. Accardi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Senior probabilists from around the world with widely differing specialities gave their visions of the state of their specialty, why they think it is important, and how they think it will develop in the new millenium. The volume includes papers given at a symposium at Columbia University in 1995, but papers from others not at the meeting were added to broaden the coverage of areas. All papers were refereed.

Stochastic and Integral Geometry

Download Stochastic and Integral Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400939213
Total Pages : 135 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Stochastic and Integral Geometry by : R.V. Ambartzumian

Download or read book Stochastic and Integral Geometry written by R.V. Ambartzumian and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Stochastic Processes

Download Stochastic Processes PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498701841
Total Pages : 866 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Processes by : Pierre Del Moral

Download or read book Stochastic Processes written by Pierre Del Moral and published by CRC Press. This book was released on 2017-02-24 with total page 866 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.

Functional Inequalities Markov Semigroups and Spectral Theory

Download Functional Inequalities Markov Semigroups and Spectral Theory PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080532071
Total Pages : 391 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Functional Inequalities Markov Semigroups and Spectral Theory by : Fengyu Wang

Download or read book Functional Inequalities Markov Semigroups and Spectral Theory written by Fengyu Wang and published by Elsevier. This book was released on 2006-04-06 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the functional inequalities are introduced to describe:(i) the spectrum of the generator: the essential and discrete spectrums, high order eigenvalues, the principle eigenvalue, and the spectral gap;(ii) the semigroup properties: the uniform intergrability, the compactness, the convergence rate, and the existence of density;(iii) the reference measure and the intrinsic metric: the concentration, the isoperimetic inequality, and the transportation cost inequality.

Stochastic Differential Equations on Manifolds

Download Stochastic Differential Equations on Manifolds PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521287677
Total Pages : 347 pages
Book Rating : 4.5/5 (212 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Differential Equations on Manifolds by : K. D. Elworthy

Download or read book Stochastic Differential Equations on Manifolds written by K. D. Elworthy and published by Cambridge University Press. This book was released on 1982 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aims of this book, originally published in 1982, are to give an understanding of the basic ideas concerning stochastic differential equations on manifolds and their solution flows, to examine the properties of Brownian motion on Riemannian manifolds when it is constructed using the stochiastic development and to indicate some of the uses of the theory. The author has included two appendices which summarise the manifold theory and differential geometry needed to follow the development; coordinate-free notation is used throughout. Moreover, the stochiastic integrals used are those which can be obtained from limits of the Riemann sums, thereby avoiding much of the technicalities of the general theory of processes and allowing the reader to get a quick grasp of the fundamental ideas of stochastic integration as they are needed for a variety of applications.

Itô’s Stochastic Calculus and Probability Theory

Download Itô’s Stochastic Calculus and Probability Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 4431685324
Total Pages : 425 pages
Book Rating : 4.4/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Itô’s Stochastic Calculus and Probability Theory by : Nobuyuki Ikeda

Download or read book Itô’s Stochastic Calculus and Probability Theory written by Nobuyuki Ikeda and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Professor Kiyosi Ito is well known as the creator of the modern theory of stochastic analysis. Although Ito first proposed his theory, now known as Ito's stochastic analysis or Ito's stochastic calculus, about fifty years ago, its value in both pure and applied mathematics is becoming greater and greater. For almost all modern theories at the forefront of probability and related fields, Ito's analysis is indispensable as an essential instrument, and it will remain so in the future. For example, a basic formula, called the Ito formula, is well known and widely used in fields as diverse as physics and economics. This volume contains 27 papers written by world-renowned probability theorists. Their subjects vary widely and they present new results and ideas in the fields where stochastic analysis plays an important role. Also included are several expository articles by well-known experts surveying recent developments. Not only mathematicians but also physicists, biologists, economists and researchers in other fields who are interested in the effectiveness of stochastic theory will find valuable suggestions for their research. In addition, students who are beginning their study and research in stochastic analysis and related fields will find instructive and useful guidance here. This volume is dedicated to Professor Ito on the occasion of his eightieth birthday as a token of deep appreciation for his great achievements and contributions. An introduction to and commentary on the scientific works of Professor Ito are also included.

Pattern Recognition. ICPR International Workshops and Challenges

Download Pattern Recognition. ICPR International Workshops and Challenges PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030687805
Total Pages : 831 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Pattern Recognition. ICPR International Workshops and Challenges by : Alberto Del Bimbo

Download or read book Pattern Recognition. ICPR International Workshops and Challenges written by Alberto Del Bimbo and published by Springer Nature. This book was released on 2021-02-24 with total page 831 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 8-volumes set constitutes the refereed of the 25th International Conference on Pattern Recognition Workshops, ICPR 2020, held virtually in Milan, Italy and rescheduled to January 10 - 11, 2021 due to Covid-19 pandemic. The 416 full papers presented in these 8 volumes were carefully reviewed and selected from about 700 submissions. The 46 workshops cover a wide range of areas including machine learning, pattern analysis, healthcare, human behavior, environment, surveillance, forensics and biometrics, robotics and egovision, cultural heritage and document analysis, retrieval, and women at ICPR2020.

From Geometry to Quantum Mechanics

Download From Geometry to Quantum Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817645306
Total Pages : 326 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis From Geometry to Quantum Mechanics by : Yoshiaki Maeda

Download or read book From Geometry to Quantum Mechanics written by Yoshiaki Maeda and published by Springer Science & Business Media. This book was released on 2007-04-22 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Invited articles in differential geometry and mathematical physics in honor of Hideki Omori * Focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, Lie group theory, quantizations and noncommutative geometry, as well as applications of PDEs and variational methods to geometry * Will appeal to graduate students in mathematics and quantum mechanics; also a reference

The Geometry of Filtering

Download The Geometry of Filtering PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 303460176X
Total Pages : 179 pages
Book Rating : 4.0/5 (346 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Filtering by : K. David Elworthy

Download or read book The Geometry of Filtering written by K. David Elworthy and published by Springer Science & Business Media. This book was released on 2010-11-27 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filtering is the science of nding the law of a process given a partial observation of it. The main objects we study here are di usion processes. These are naturally associated with second-order linear di erential operators which are semi-elliptic and so introduce a possibly degenerate Riemannian structure on the state space. In fact, much of what we discuss is simply about two such operators intertwined by a smooth map, the \projection from the state space to the observations space", and does not involve any stochastic analysis. From the point of view of stochastic processes, our purpose is to present and to study the underlying geometric structure which allows us to perform the ltering in a Markovian framework with the resulting conditional law being that of a Markov process which is time inhomogeneous in general. This geometry is determined by the symbol of the operator on the state space which projects to a symbol on the observation space. The projectible symbol induces a (possibly non-linear and partially de ned) connection which lifts the observation process to the state space and gives a decomposition of the operator on the state space and of the noise. As is standard we can recover the classical ltering theory in which the observations are not usually Markovian by application of the Girsanov- Maruyama-Cameron-Martin Theorem. This structure we have is examined in relation to a number of geometrical topics.