Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion

Download Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion PDF Online Free

Author :
Publisher : Istitituto Italiano di Tecnologia (IIT)
ISBN 13 :
Total Pages : 146 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion by : Romeo Orsolino

Download or read book Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion written by Romeo Orsolino and published by Istitituto Italiano di Tecnologia (IIT). This book was released on 2019-02-14 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the recent years, we witnessed an ever increasing number of successful hardware implementations of motion planners for legged robots. If one common property is to be identified among these real-world applications, that is the ability of performing online (re)planning. Online planning is forgiving, in the sense that it allows to relentlessly compensate for external disturbances of whatever form they might be, ranging from unmodeled dynamics to external pushes or unexpected obstacles and, at the same time, follow user commands. Initially replanning was restricted only to heuristic-based planners that exploit the low computational effort of simplified dynamic models. Such models deliberately only capture the main dynamics of the system, thus leaving to the controllers the issue of anchoring the desired trajectory to the whole body model of the robot. In recent years, however, a number of novel Model Predictive Control (MPC) approaches have been presented that attempt to increase the accuracy of the obtained solutions by employing more complex dynamic formulations, this without trading-off the computational efficiency of simplified models. In this dissertation, as an example of successful hardware implementation of heuristics and simplified model-based locomotion, I first describe the control framework that I developed for the generation of an omni-directional bounding gait for the HyQ quadruped robot. By analyzing the stable limit cycles for the sagittal dynamics and the Center of Pressure (CoP) for the lateral stabilization, the described locomotion framework is able to achieve a stable bounding gait while adapting the footsteps to terrains of mild roughness and to sudden changes of the user desired linear and angular velocities. The next topic reported and second contribution of this dissertation is my effort to formulate more descriptive simplified dynamic models, without compromising their computational efficiency, in order to extend the navigation capabilities of legged robots to complex geometry environments. With this in mind, I investigated the possibility of incorporating feasibility constraints in these template models and, in particular, I focused on the joint-torque limits, which are usually neglected at the planning stage. Along the same direction, the third contribution discussed in this thesis is the formulation of the so called actuation wrench polytope (AWP), defined as the set of feasible wrenches that an articulated robot can perform given its actuation limits. Interesected with the contact wrench cone (CWC), this yields a new 6D polytope that we name feasible wrench polytope (FWP), defined as the set of all wrenches that a legged robot can realize given its actuation capabilities and the friction constraints. Results are reported where, thanks to efficient computational geometry algorithms and to appropriate approximations, the FWP is employed for a one-step receding horizon optimization of center of mass trajectory and phase durations given a predefined step sequence on rough terrains. In order to augment the robot’s reachable workspace, I then decided to trade off the generality of the FWP formulation for a suboptimal scenario in which a quasi-static motion is assumed. This led to the definition of a new concept that I refer to under the name of feasible region. This can be seen as a different variant of 2D linear subspaces orthogonal to gravity where the robot is guaranteed to place its own center of mass (CoM) while being able to carry its own body weight given its actuation capabilities. The feasible region provides an intuitive tool for the visualization in 2D of the actuation capabilities of legged robots. The low dimensionality of the feasible region also enables the concurrent online optimization of actuation consistent CoM trajectories and target foothold locations on rough terrains, which can hardly be achieved with other state-of-the-art approaches.

Human-Like Advances in Robotics: Motion, Actuation, Sensing, Cognition and Control

Download Human-Like Advances in Robotics: Motion, Actuation, Sensing, Cognition and Control PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889632652
Total Pages : 129 pages
Book Rating : 4.8/5 (896 download)

DOWNLOAD NOW!


Book Synopsis Human-Like Advances in Robotics: Motion, Actuation, Sensing, Cognition and Control by : Tadej Petric

Download or read book Human-Like Advances in Robotics: Motion, Actuation, Sensing, Cognition and Control written by Tadej Petric and published by Frontiers Media SA. This book was released on 2019-12-24 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Bioinspired Legged Locomotion

Download Bioinspired Legged Locomotion PDF Online Free

Author :
Publisher : Butterworth-Heinemann
ISBN 13 : 0128037741
Total Pages : 698 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Bioinspired Legged Locomotion by : Maziar Ahmad Sharbafi

Download or read book Bioinspired Legged Locomotion written by Maziar Ahmad Sharbafi and published by Butterworth-Heinemann. This book was released on 2017-11-21 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. Presents state-of-the-art control approaches with biological relevance Provides a thorough understanding of the principles of organization of biological locomotion Teaches the organization of complex systems based on low-dimensional motion concepts/control Acts as a guideline reference for future robots/assistive devices with legged architecture Includes a selective bibliography on the most relevant published articles

Hybrid Control and Motion Planning of Dynamical Legged Locomotion

Download Hybrid Control and Motion Planning of Dynamical Legged Locomotion PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118393724
Total Pages : 201 pages
Book Rating : 4.1/5 (183 download)

DOWNLOAD NOW!


Book Synopsis Hybrid Control and Motion Planning of Dynamical Legged Locomotion by : Nasser Sadati

Download or read book Hybrid Control and Motion Planning of Dynamical Legged Locomotion written by Nasser Sadati and published by John Wiley & Sons. This book was released on 2012-09-11 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the need in the field for a comprehensive review of motion planning algorithms and hybrid control methodologies for complex legged robots. Introducing a multidisciplinary systems engineering approach for tackling many challenges posed by legged locomotion, the book provides engineering detail including hybrid models for planar and 3D legged robots, as well as hybrid control schemes for asymptotically stabilizing periodic orbits in these closed-loop systems. Complete with downloadable MATLAB code of the control algorithms and schemes used in the book, this book is an invaluable guide to the latest developments and future trends in dynamical legged locomotion.

Control Implementation of Dynamic Locomotion on Compliant, Underactuated, Force-Controlled Legged Robots with Non-Anthropomorphic Design

Download Control Implementation of Dynamic Locomotion on Compliant, Underactuated, Force-Controlled Legged Robots with Non-Anthropomorphic Design PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 224 pages
Book Rating : 4.:/5 (114 download)

DOWNLOAD NOW!


Book Synopsis Control Implementation of Dynamic Locomotion on Compliant, Underactuated, Force-Controlled Legged Robots with Non-Anthropomorphic Design by : Jeffrey Chen Yu

Download or read book Control Implementation of Dynamic Locomotion on Compliant, Underactuated, Force-Controlled Legged Robots with Non-Anthropomorphic Design written by Jeffrey Chen Yu and published by . This book was released on 2020 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: The control of locomotion on legged robots traditionally involves a robot that takes a standard legged form, such as the anthropomorphic humanoid, the dog-like quadruped, or the bird-like biped. Additionally, these systems will often be actuated with position-controlled servos or series-elastic actuators that are connected through rigid links. This work investigates the control implementation of dynamic, force-controlled locomotion on a family of legged systems that significantly deviate from these classic paradigms by incorporating modern, state-of-the-art proprioceptive actuators on uniquely configured compliant legs that do not closely resemble those found in nature. The results of this work can be used to better inform how to implement controllers on legged systems without stiff, position-controlled actuators, and also provide insight on how intelligently designed mechanical features can potentially simplify the control of complex, nonlinear dynamical systems like legged robots. To this end, this work presents the approach to control for a family of non-anthropomorphic bipedal robotic systems which are developed both in simulation and with physical hardware. The first is the Non-Anthropomorphic Biped, Version 1 (NABi-1) that features position-controlled joints along with a compliant foot element on a minimally actuated leg, and is controlled using simple open-loop trajectories based on the Zero Moment Point. The second system is the second version of the non-anthropomorphic biped (NABi-2) which utilizes the proprioceptive Back-drivable Electromagnetic Actuator for Robotics (BEAR) modules for actuation and fully realizes feedback-based force controlled locomotion. These systems are used to highlight both the strengths and weaknesses of utilizing proprioceptive actuation in systems, and suggest the tradeoffs that are made when using force control for dynamic locomotion. These systems also present case studies for different approaches to system design when it comes to bipedal legged robots.

Quadrupedal Locomotion

Download Quadrupedal Locomotion PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846283078
Total Pages : 272 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Quadrupedal Locomotion by : Pablo González de Santos

Download or read book Quadrupedal Locomotion written by Pablo González de Santos and published by Springer Science & Business Media. This book was released on 2007-02-17 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Walking machines have advantages over traditional vehicles, and have already accomplished tasks that wheeled or tracked robots cannot handle. Nevertheless, their use in industry and services is currently limited in scope. This book brings together methods and techniques that have been developed to deal with obstacles to wider acceptance of legged robots. Part I provides an historical overview. Part II concentrates on control techniques, as applied to Four-legged robots.

A General Model of Legged Locomotion on Natural Terrain

Download A General Model of Legged Locomotion on Natural Terrain PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781461365884
Total Pages : 116 pages
Book Rating : 4.3/5 (658 download)

DOWNLOAD NOW!


Book Synopsis A General Model of Legged Locomotion on Natural Terrain by : David J. Manko

Download or read book A General Model of Legged Locomotion on Natural Terrain written by David J. Manko and published by Springer. This book was released on 2012-11-10 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic modeling is the fundamental building block for mechanism analysis, design, control and performance evaluation. One class of mechanism, legged machines, have multiple closed-chains established through intermittent ground contacts. Further, walking on natural terrain introduces nonlinear system compliance in the forms of foot sinkage and slippage. Closed-chains constrain the possible motions of a mechanism while compliances affect the redistribution of forces throughout the system. A General Model of Legged Locomotion on Natural Terrain develops a dynamic mechanism model that characterizes indeterminate interactions of a closed-chain robot with its environment. The approach is applicable to any closed-chain mechanism with sufficient contact compliance, although legged locomotion on natural terrain is chosen to illustrate the methodology. The modeling and solution procedures are general to all walking machine configurations, including bipeds, quadrupeds, beam-walkers and hopping machines. This work develops a functional model of legged locomotion that incorporates, for the first time, non-conservative foot-soil interactions in a nonlinear dynamic formulation. The model was applied to a prototype walking machine, and simulations generated significant insights into walking machine performance on natural terrain. The simulations are original and essential contributions to the design, evaluation and control of these complex robot systems. While posed in the context of walking machines, the approach has wider applicability to rolling locomotors, cooperating manipulators, multi-fingered hands, and prehensile agents.

Walking Machines

Download Walking Machines PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468468588
Total Pages : 184 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Walking Machines by : D. J. Todd

Download or read book Walking Machines written by D. J. Todd and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first chapter of this book traces the history of the development of walking machines from the original ideas of man-amplifiers and military rough-ground transport to today's diverse academic and industrial research and development projects. It concludes with a brief account of research on other unusual methods of locomotion. The heart of the book is the next three chapters on the theory and engineering of legged robots. Chapter 2 presents the basics of land loco motion, going on to consider the energetics of legged movement and the description and classification of gaits. Chapter 3, dealing with the mechanics of legged vehicles, goes into leg number and arrangement, and discusses mechanical design and actuation methods. Chapter 4 deals with analysis and control, describing the aims of control theory and the methods of modelling and control which have been used for both highly dynamic robots and multi-legged machines. Having dealt with the theory of control it is necessary to discuss the computing system on which control is to be implemented. This is done in Chapter 5, which covers architectures, sensing, algorithms and pro gramming languages. Chapter 6 brings together the threads of the theory and engineering discussed in earlier chapters and summarizes the current walking machine research projects. Finally, the applications, both actual and potential, of legged locomotion are described. Introduction Research into legged machines is expanding rapidly. There are several reasons why this is happening at this particular time.

Multi-body Dynamic Modeling of Multi-legged Robots

Download Multi-body Dynamic Modeling of Multi-legged Robots PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811529531
Total Pages : 203 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Multi-body Dynamic Modeling of Multi-legged Robots by : Abhijit Mahapatra

Download or read book Multi-body Dynamic Modeling of Multi-legged Robots written by Abhijit Mahapatra and published by Springer Nature. This book was released on 2020-02-27 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments. The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton–Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.

Regularized Predictive Control Framework for Robust Dynamic Legged Locomotion

Download Regularized Predictive Control Framework for Robust Dynamic Legged Locomotion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 160 pages
Book Rating : 4.:/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Regularized Predictive Control Framework for Robust Dynamic Legged Locomotion by : Gerardo Bledt

Download or read book Regularized Predictive Control Framework for Robust Dynamic Legged Locomotion written by Gerardo Bledt and published by . This book was released on 2020 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Legged robots have the potential to be highly dynamic machines capable of outperforming humans and animals in executing locomotion tasks within dangerous and unstructured environments. Unfortunately, current control methods still lack the ability to move with the agility and robustness needed to traverse arbitrary terrains with the same grace and reliability as animals. This dissertation presents the successful implementation of a novel nonlinear optimization-based Regularized Predictive Control (RPC) framework that optimizes robot states, footstep locations, and ground reaction forces over a future prediction horizon. RPC exploits expertly designed and data-driven extracted heuristics by directly embedding them in the optimization through regularization in the cost function. Well-designed regularization should bias results towards a "good enough" heuristic solution by shaping the cost space favorably, while allowing the optimization to find a better result if it exists. However, designing meaningful regularized cost functions and adequate heuristics is challenging and not straightforward. A novel framework is presented for automatically extracting and designing new principled legged locomotion heuristics by fitting simple intuitive models to simulated and experimental data using RPC. Statistically correlated relationships between desired commands, robot states, and optimal control inputs are found by allowing the optimization to more exhaustively search the cost space during offline explorations when not subjected to real-time computation constraints. This method extracts simple, but powerful heuristics that can approximate complex dynamics and account for errors stemming from model simplifications or parameter uncertainty without the loss of physical intuition. Nonlinear optimization-based controllers have shown improved capabilities in simulation, but fall short when implemented on hardware systems that must adhere to real-time computation constraints and physical limits. Various methods and algorithms critical to the success of the robot were developed to overcome these challenges. The controller is verified experimentally using the MIT Cheetah 3 and Mini Cheetah robot platforms. Results demonstrate the ability of the robot to track dynamic velocity and turn rate commands with a variety of parametrized gaits, remain upright through large impulsive and sustained disturbances, and traverse highly irregular terrains. All of these behaviors are achieved with no modifications to the controller structure and with one set of gains signifying the generalized robustness of RPC. This work represents a step towards more robust dynamic locomotion capabilities for legged robots.

Advances in Mechatronics and Biomechanics towards Efficient Robot Actuation

Download Advances in Mechatronics and Biomechanics towards Efficient Robot Actuation PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 288945911X
Total Pages : 195 pages
Book Rating : 4.8/5 (894 download)

DOWNLOAD NOW!


Book Synopsis Advances in Mechatronics and Biomechanics towards Efficient Robot Actuation by : Jörn Malzahn

Download or read book Advances in Mechatronics and Biomechanics towards Efficient Robot Actuation written by Jörn Malzahn and published by Frontiers Media SA. This book was released on 2019-06-28 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Global Perspectives on Robotics and Autonomous Systems: Development and Applications

Download Global Perspectives on Robotics and Autonomous Systems: Development and Applications PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1668477939
Total Pages : 423 pages
Book Rating : 4.6/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Global Perspectives on Robotics and Autonomous Systems: Development and Applications by : Habib, Maki K.

Download or read book Global Perspectives on Robotics and Autonomous Systems: Development and Applications written by Habib, Maki K. and published by IGI Global. This book was released on 2023-08-01 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is an increasing demand to develop intelligent robotics and autonomous systems to deal with dynamically changing and complex, unstructured, and unpredictable environments. Such robots should be able to handle task varieties, environment dynamics and goal variations, and their complexity. This also highlights the need for having intelligent robotics and autonomous systems with capabilities assuring reliable and robust functions resolving real-time complex problems that are associated with many applications across diverse domains. This requires unconventional ways to develop creative and innovative, energy-efficient, and eco- and environmentally friendly solutions that consider new ways of creative thinking while drawing inspiration from nature as a model leading to creating new designs, intelligent systems, intelligent structures/mechanisms, reconfigurability, and more. Global Perspectives on Robotics and Autonomous Systems: Development and Applications describes the evolution of robotics and autonomous systems, their development, their technologies, and their applications. This book discusses the concept of autonomy, requirements, and its role in shaping the behavior of these robots so that they can make their own effective and safe decisions and act on them reliably while assuring real-life requirements. Covering topics such as digital transformation, fused deposition modeling (FDM), and organizational unbundling process, this premier reference source is an essential resource for engineers, computer scientists, industry professionals, manufacturers, smart systems developers, data analysts, students and educators of higher educations, researchers, and academicians.

Dynamic Legged Locomotion in Robots and Animals

Download Dynamic Legged Locomotion in Robots and Animals PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 123 pages
Book Rating : 4.:/5 (227 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Legged Locomotion in Robots and Animals by :

Download or read book Dynamic Legged Locomotion in Robots and Animals written by and published by . This book was released on 1995 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: * Is Cockroach Locomotion Dynamic? -To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that "Groucho Running," a type of dynamic walking, seems feasible at cockroach scale. * How Do Bipeds Shift Weight Between the Legs? - We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. * 3D Biped Gymnastics -The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. * Passively Stabilized Layout Somersault-We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical "doll" model and computer simulation to illustrate the point. * Twisting-Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.

Legged Robots that Balance

Download Legged Robots that Balance PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262181174
Total Pages : 254 pages
Book Rating : 4.1/5 (811 download)

DOWNLOAD NOW!


Book Synopsis Legged Robots that Balance by : Marc H. Raibert

Download or read book Legged Robots that Balance written by Marc H. Raibert and published by MIT Press. This book was released on 1986 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, by a leading authority on legged locomotion, presents exciting engineering and science, along with fascinating implications for theories of human motor control. It lays fundamental groundwork in legged locomotion, one of the least developed areas of robotics, addressing the possibility of building useful legged robots that run and balance. The book describes the study of physical machines that run and balance on just one leg, including analysis, computer simulation, and laboratory experiments. Contrary to expectations, it reveals that control of such machines is not particularly difficult. It describes how the principles of locomotion discovered with one leg can be extended to systems with several legs and reports preliminary experiments with a quadruped machine that runs using these principles. Raibert's work is unique in its emphasis on dynamics and active balance, aspects of the problem that have played a minor role in most previous work. His studies focus on the central issues of balance and dynamic control, while avoiding several problems that have dominated previous research on legged machines. Marc Raibert is Associate Professor of Computer Science and Robotics at Carnegie-Mellon University and on the editorial board of The MIT Press journal, Robotics Research. Legged Robots That Balanceis fifteenth in the Artificial Intelligence Series, edited by Patrick Winston and Michael Brady.

Tri-Modal Models of Locomotion Applications to Robot Design and Control

Download Tri-Modal Models of Locomotion Applications to Robot Design and Control PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (141 download)

DOWNLOAD NOW!


Book Synopsis Tri-Modal Models of Locomotion Applications to Robot Design and Control by : Max Austin

Download or read book Tri-Modal Models of Locomotion Applications to Robot Design and Control written by Max Austin and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everyday animals maneuver through complex unstructured environments provided by the natural world. One way in which we can study these behaviors in animals is by partitioning the natural world into differing domains and analyzing the modes of locomotion employed by animals within them. Though animals appear to achieve multi-modality with apparent ease no robots have yet been able to approach the same degree of modal diversity. Some motivating reasons for this derive from limited understandings of the intersection between domains and how uniting these diverse modes changes the design of mechanisms and control. This work seeks to develop tools to assist with the task of bridging three different domains of legged locomotion. In particular, this work takes its primary focus on developing models which intersect with the aquatic domain, which has been largely unmodeled for legged robotics. To that end, the first thrust of this work entails developing a model that intersects between the scansorial and aquatic domains of legged locomotion. This model is then evaluated by the first legged robot capable of producing both of these forms of locomotion. Following this the a new model is developed to capture the intersection between the aquatic and terrestrial domains, which also serves to evaluate different levels of hydrodynamic complexity. It is shown here that optimizing a simple version of this model the efficiency of hopping in resistive media can be greatly improved and that differing levels of model can show a good degree of accuracy with legged swimming. Finally, some of the models of locomotion are applied to the task of robotic design for dynamically challenging behaviors including: enabling high performance terrestrial gaits on the large robot LLAMA, and enabling multi-modality on a newly designed small scale robot.

Policy Regularized Model Predictive Control Framework for Robust Legged Locomotion

Download Policy Regularized Model Predictive Control Framework for Robust Legged Locomotion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 71 pages
Book Rating : 4.:/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Policy Regularized Model Predictive Control Framework for Robust Legged Locomotion by : Gerardo Bledt

Download or read book Policy Regularized Model Predictive Control Framework for Robust Legged Locomotion written by Gerardo Bledt and published by . This book was released on 2018 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel Policy Regularized Model Predictive Control (PR-MPC) framework is developed to allow general robust legged locomotion with the MIT Cheetah quadruped robot. The full system is approximated by a simple control model that retains the key nonlinearities characteristic to legged contact dynamics while reducing the complexity of the continuous dynamics. Nominal footstep locations and feedforward forces for controlling the robot's center of mass are designed from simple physics-based heuristics for steady state legged movement. By regularizing the predictive optimization with these policies, we can exploit the known dynamics of the system to bias the controller towards the steady state gait while remaining free to explore the cost space during transient behaviors and disturbances. The nonlinear optimization makes use of direct collocation on the simplified dynamics to pose the problem with a highly sparse structure for fast computation. A generalized approach to the controller design is independent from specific gait pattern and reference policy and allows stabilization of aperiodic locomotion. Simulation results show dynamic capabilities in a variety of gaits including trotting, bounding, and galloping, all without changing the set of algorithm parameters between experiments. Robustness to sensor and input noise, large push disturbances, and unstructured terrain demonstrate the ability of the predictive controller to adapt to uncertainty.

Intelligent Robotics and Applications

Download Intelligent Robotics and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030890953
Total Pages : 834 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Robotics and Applications by : Xin-Jun Liu

Download or read book Intelligent Robotics and Applications written by Xin-Jun Liu and published by Springer Nature. This book was released on 2021-10-19 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 4-volume set LNAI 13013 – 13016 constitutes the proceedings of the 14th International Conference on Intelligent Robotics and Applications, ICIRA 2021, which took place in Yantai, China, during October 22-25, 2021. The 299 papers included in these proceedings were carefully reviewed and selected from 386 submissions. They were organized in topical sections as follows: Robotics dexterous manipulation; sensors, actuators, and controllers for soft and hybrid robots; cable-driven parallel robot; human-centered wearable robotics; hybrid system modeling and human-machine interface; robot manipulation skills learning; micro_nano materials, devices, and systems for biomedical applications; actuating, sensing, control, and instrumentation for ultra-precision engineering; human-robot collaboration; robotic machining; medical robot; machine intelligence for human motion analytics; human-robot interaction for service robots; novel mechanisms, robots and applications; space robot and on-orbit service; neural learning enhanced motion planning and control for human robot interaction; medical engineering.