Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Study Of The Ordinary Differential Equation
Download A Study Of The Ordinary Differential Equation full books in PDF, epub, and Kindle. Read online A Study Of The Ordinary Differential Equation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Ordinary Differential Equations by : Morris Tenenbaum
Download or read book Ordinary Differential Equations written by Morris Tenenbaum and published by Courier Corporation. This book was released on 1985-10-01 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Book Synopsis Linear Ordinary Differential Equations by : Earl A. Coddington
Download or read book Linear Ordinary Differential Equations written by Earl A. Coddington and published by SIAM. This book was released on 1997-01-01 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Ordinary Differential Equations, a text for advanced undergraduate or beginning graduate students, presents a thorough development of the main topics in linear differential equations. A rich collection of applications, examples, and exercises illustrates each topic. The authors reinforce students' understanding of calculus, linear algebra, and analysis while introducing the many applications of differential equations in science and engineering. Three recurrent themes run through the book. The methods of linear algebra are applied directly to the analysis of systems with constant or periodic coefficients and serve as a guide in the study of eigenvalues and eigenfunction expansions. The use of power series, beginning with the matrix exponential function leads to the special functions solving classical equations. Techniques from real analysis illuminate the development of series solutions, existence theorems for initial value problems, the asymptotic behavior solutions, and the convergence of eigenfunction expansions.
Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl
Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Society. This book was released on 2024-01-12 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Book Synopsis Ordinary Differential Equations by : Luis Barreira
Download or read book Ordinary Differential Equations written by Luis Barreira and published by American Mathematical Society. This book was released on 2023-05-17 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.
Book Synopsis Ordinary Differential Equations: Basics and Beyond by : David G. Schaeffer
Download or read book Ordinary Differential Equations: Basics and Beyond written by David G. Schaeffer and published by Springer. This book was released on 2016-11-10 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text (www.math.duke.edu/ode-book). Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses. Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom).
Book Synopsis Differential Equations by : Shepley L. Ross
Download or read book Differential Equations written by Shepley L. Ross and published by John Wiley & Sons. This book was released on 1974 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental methods and applications; Fundamental theory and further methods;
Book Synopsis Ordinary Differential Equations in Rn by : Livio C. Piccinini
Download or read book Ordinary Differential Equations in Rn written by Livio C. Piccinini and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the fifties, one of the authors, G. Stampacchia, had prepared some lecture notes on ordinary differential equations for a course in ad analysis. These remained for a long time unused because he was no vanced longer very interested in the study of such equations. We now see, though, that numerous applications to biology, chemistry, economics, and medicine have recently been added to the traditional ones in mechanics; also, there has been in these last years a reemergence of interest in nonlinear analy sis, of which the theory of ordinary differential euqations is one of the principal sources of methods and problems. Hence the idea to write a book. Our text, based on the old notes and experience gained in many courses, seminars, and conferences, both in Italy and abroad, aims to give a simple and rapid introduction to the various themes, problems, and methods of the theory of ordinary differential equations. The book has been conceived in such a way so that even the reader who has merely had a first course in calculus may be able to study it and to obtain a panoramic vision of the theory. We have tried to avoid abstract formalism, preferring instead a discursive style, which should make the book accessible to engineers and physicists without specific preparation in modern mathematics. For students of mathematics, it pro vides motivation for the subject of more advanced analysis courses.
Book Synopsis Ordinary Differential Equations by : Philip Hartman
Download or read book Ordinary Differential Equations written by Philip Hartman and published by SIAM. This book was released on 1982-01-01 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinary Differential Equations covers the fundamentals of the theory of ordinary differential equations (ODEs), including an extensive discussion of the integration of differential inequalities, on which this theory relies heavily. In addition to these results, the text illustrates techniques involving simple topological arguments, fixed point theorems, and basic facts of functional analysis. Unlike many texts, which supply only the standard simplified theorems, this book presents the basic theory of ODEs in a general way. This SIAM reissue of the 1982 second edition covers invariant manifolds, perturbations, and dichotomies, making the text relevant to current studies of geometrical theory of differential equations and dynamical systems. In particular, Ordinary Differential Equations includes the proof of the Hartman-Grobman theorem on the equivalence of a nonlinear to a linear flow in the neighborhood of a hyperbolic stationary point, as well as theorems on smooth equivalences, the smoothness of invariant manifolds, and the reduction of problems on ODEs to those on "maps" (Poincaré). Audience: readers should have knowledge of matrix theory and the ability to deal with functions of real variables.
Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Thomas C. Sideris
Download or read book Ordinary Differential Equations and Dynamical Systems written by Thomas C. Sideris and published by Springer Science & Business Media. This book was released on 2013-10-17 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a mathematically rigorous introduction to the beautiful subject of ordinary differential equations for beginning graduate or advanced undergraduate students. Students should have a solid background in analysis and linear algebra. The presentation emphasizes commonly used techniques without necessarily striving for completeness or for the treatment of a large number of topics. The first half of the book is devoted to the development of the basic theory: linear systems, existence and uniqueness of solutions to the initial value problem, flows, stability, and smooth dependence of solutions upon initial conditions and parameters. Much of this theory also serves as the paradigm for evolutionary partial differential equations. The second half of the book is devoted to geometric theory: topological conjugacy, invariant manifolds, existence and stability of periodic solutions, bifurcations, normal forms, and the existence of transverse homoclinic points and their link to chaotic dynamics. A common thread throughout the second part is the use of the implicit function theorem in Banach space. Chapter 5, devoted to this topic, the serves as the bridge between the two halves of the book.
Book Synopsis Ordinary Differential Equations and Linear Algebra by : Todd Kapitula
Download or read book Ordinary Differential Equations and Linear Algebra written by Todd Kapitula and published by SIAM. This book was released on 2015-11-17 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system. Ordinary Differential Equations and Linear Algebra: A Systems Approach systematically develops the linear algebra needed to solve systems of ODEs and includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). It emphasizes mathematical modeling and contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.
Book Synopsis Ordinary Differential Equations and Their Solutions by : George Moseley Murphy
Download or read book Ordinary Differential Equations and Their Solutions written by George Moseley Murphy and published by Courier Corporation. This book was released on 2011-01-01 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatment presents most of the methods for solving ordinary differential equations and systematic arrangements of more than 2,000 equations and their solutions. The material is organized so that standard equations can be easily found. Plus, the substantial number and variety of equations promises an exact equation or a sufficiently similar one. 1960 edition.
Book Synopsis Ordinary Differential Equations by : William A. Adkins
Download or read book Ordinary Differential Equations written by William A. Adkins and published by Springer Science & Business Media. This book was released on 2012-07-01 with total page 807 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.
Book Synopsis Ordinary Differential Equations with Applications by : Carmen Chicone
Download or read book Ordinary Differential Equations with Applications written by Carmen Chicone and published by Springer Science & Business Media. This book was released on 2008-04-08 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.
Book Synopsis Ordinary Differential Equations by : Jack K. Hale
Download or read book Ordinary Differential Equations written by Jack K. Hale and published by . This book was released on 1980 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Numerical Methods for Ordinary Differential Equations by : J. C. Butcher
Download or read book Numerical Methods for Ordinary Differential Equations written by J. C. Butcher and published by John Wiley & Sons. This book was released on 2004-08-20 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.
Book Synopsis Ordinary Differential Equations With Applications (2nd Edition) by : Sze-bi Hsu
Download or read book Ordinary Differential Equations With Applications (2nd Edition) written by Sze-bi Hsu and published by World Scientific Publishing Company. This book was released on 2013-06-07 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past three decades, the development of nonlinear analysis, dynamical systems and their applications to science and engineering has stimulated renewed enthusiasm for the theory of Ordinary Differential Equations (ODE).This useful book, which is based on the lecture notes of a well-received graduate course, emphasizes both theory and applications, taking numerous examples from physics and biology to illustrate the application of ODE theory and techniques.Written in a straightforward and easily accessible style, this volume presents dynamical systems in the spirit of nonlinear analysis to readers at a graduate level and serves both as a textbook and as a valuable resource for researchers.This new edition contains corrections and suggestions from the various readers and users. A new chapter on Monotone Dynamical Systems is added to take into account the new developments in ordinary differential equations and dynamical systems.
Book Synopsis Ordinary Differential Equations by : Wolfgang Walter
Download or read book Ordinary Differential Equations written by Wolfgang Walter and published by Springer Science & Business Media. This book was released on 2013-03-11 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.