A Course in Minimal Surfaces

Download A Course in Minimal Surfaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821853236
Total Pages : 330 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Course in Minimal Surfaces by : Tobias H. Colding

Download or read book A Course in Minimal Surfaces written by Tobias H. Colding and published by American Mathematical Soc.. This book was released on 2011 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science."--Publisher's description.

A Course in Minimal Surfaces

Download A Course in Minimal Surfaces PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470476401
Total Pages : 330 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Course in Minimal Surfaces by : Tobias Holck Colding

Download or read book A Course in Minimal Surfaces written by Tobias Holck Colding and published by American Mathematical Society. This book was released on 2024-01-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.

The Global Theory of Minimal Surfaces in Flat Spaces

Download The Global Theory of Minimal Surfaces in Flat Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540431206
Total Pages : 136 pages
Book Rating : 4.4/5 (312 download)

DOWNLOAD NOW!


Book Synopsis The Global Theory of Minimal Surfaces in Flat Spaces by : William Meeks

Download or read book The Global Theory of Minimal Surfaces in Flat Spaces written by William Meeks and published by Springer Science & Business Media. This book was released on 2002-03-25 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the second half of the twentieth century the global theory of minimal surface in flat space had an unexpected and rapid blossoming. Some of the classical problems were solved and new classes of minimal surfaces found. Minimal surfaces are now studied from several different viewpoints using methods and techniques from analysis (real and complex), topology and geometry. In this lecture course, Meeks, Ros and Rosenberg, three of the main architects of the modern edifice, present some of the more recent methods and developments of the theory. The topics include moduli, asymptotic geometry and surfaces of constant mean curvature in the hyperbolic space.

Geometry V

Download Geometry V PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540605232
Total Pages : 300 pages
Book Rating : 4.6/5 (52 download)

DOWNLOAD NOW!


Book Synopsis Geometry V by : Robert Osserman

Download or read book Geometry V written by Robert Osserman and published by Springer Science & Business Media. This book was released on 1997-10-09 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function.

Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. (MN-27)

Download Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. (MN-27) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400856450
Total Pages : 337 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. (MN-27) by : Jon T. Pitts

Download or read book Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. (MN-27) written by Jon T. Pitts and published by Princeton University Press. This book was released on 2014-07-14 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical No/ex, 27 Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Lectures on Minimal Surfaces: Introduction, fundamentals, geometry and basic boundary value problems

Download Lectures on Minimal Surfaces: Introduction, fundamentals, geometry and basic boundary value problems PDF Online Free

Author :
Publisher :
ISBN 13 : 9780521244275
Total Pages : 563 pages
Book Rating : 4.2/5 (442 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Minimal Surfaces: Introduction, fundamentals, geometry and basic boundary value problems by : Johannes C. C. Nitsche

Download or read book Lectures on Minimal Surfaces: Introduction, fundamentals, geometry and basic boundary value problems written by Johannes C. C. Nitsche and published by . This book was released on 1989 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and translated version of the first five chapters of Vorlesungen ^D"uber Minimalfl^D"achen. It deals with the parametric minimal surface in Euclidean space. The author presents a broad survey that extends from the classical beginnings to the current situation while highlighting many of the subject's main features and interspersing the mathematical development with pertinent historical remarks.

A First Course in Differential Geometry

Download A First Course in Differential Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108424937
Total Pages : 275 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Differential Geometry by : Lyndon Woodward

Download or read book A First Course in Differential Geometry written by Lyndon Woodward and published by Cambridge University Press. This book was released on 2019 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: With detailed explanations and numerous examples, this textbook covers the differential geometry of surfaces in Euclidean space.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821839888
Total Pages : 394 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Wolfgang Kühnel

Download or read book Differential Geometry written by Wolfgang Kühnel and published by American Mathematical Soc.. This book was released on 2006 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.

Change and Variations

Download Change and Variations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030705757
Total Pages : 421 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Change and Variations by : Jeremy Gray

Download or read book Change and Variations written by Jeremy Gray and published by Springer Nature. This book was released on 2021-06-03 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a history of differential equations, both ordinary and partial, as well as the calculus of variations, from the origins of the subjects to around 1900. Topics treated include the wave equation in the hands of d’Alembert and Euler; Fourier’s solutions to the heat equation and the contribution of Kovalevskaya; the work of Euler, Gauss, Kummer, Riemann, and Poincaré on the hypergeometric equation; Green’s functions, the Dirichlet principle, and Schwarz’s solution of the Dirichlet problem; minimal surfaces; the telegraphists’ equation and Thomson’s successful design of the trans-Atlantic cable; Riemann’s paper on shock waves; the geometrical interpretation of mechanics; and aspects of the study of the calculus of variations from the problems of the catenary and the brachistochrone to attempts at a rigorous theory by Weierstrass, Kneser, and Hilbert. Three final chapters look at how the theory of partial differential equations stood around 1900, as they were treated by Picard and Hadamard. There are also extensive, new translations of original papers by Cauchy, Riemann, Schwarz, Darboux, and Picard. The first book to cover the history of differential equations and the calculus of variations in such breadth and detail, it will appeal to anyone with an interest in the field. Beyond secondary school mathematics and physics, a course in mathematical analysis is the only prerequisite to fully appreciate its contents. Based on a course for third-year university students, the book contains numerous historical and mathematical exercises, offers extensive advice to the student on how to write essays, and can easily be used in whole or in part as a course in the history of mathematics. Several appendices help make the book self-contained and suitable for self-study.

Differential Geometry of Curves and Surfaces

Download Differential Geometry of Curves and Surfaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811517398
Total Pages : 192 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Curves and Surfaces by : Shoshichi Kobayashi

Download or read book Differential Geometry of Curves and Surfaces written by Shoshichi Kobayashi and published by Springer Nature. This book was released on 2019-11-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss–Bonnet Theorem; and 5. Minimal Surfaces. Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures — the Gaussian curvature K and the mean curvature H —are introduced. The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain. Then the Gauss–Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number χ(S). Here again, many illustrations are provided to facilitate the reader’s understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis. However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2.

Differential Geometry and Its Applications

Download Differential Geometry and Its Applications PDF Online Free

Author :
Publisher : MAA
ISBN 13 : 9780883857489
Total Pages : 508 pages
Book Rating : 4.8/5 (574 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Its Applications by : John Oprea

Download or read book Differential Geometry and Its Applications written by John Oprea and published by MAA. This book was released on 2007-09-06 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.

Geometry In Advanced Pure Mathematics

Download Geometry In Advanced Pure Mathematics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 1786341093
Total Pages : 235 pages
Book Rating : 4.7/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Geometry In Advanced Pure Mathematics by : Shaun Bullett

Download or read book Geometry In Advanced Pure Mathematics written by Shaun Bullett and published by World Scientific. This book was released on 2017-03-07 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book leads readers from a basic foundation to an advanced level understanding of geometry in advanced pure mathematics. Chapter by chapter, readers will be led from a foundation level understanding to advanced level understanding. This is the perfect text for graduate or PhD mathematical-science students looking for support in algebraic geometry, geometric group theory, modular group, holomorphic dynamics and hyperbolic geometry, syzygies and minimal resolutions, and minimal surfaces.Geometry in Advanced Pure Mathematics is the fourth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.

Explorations in Complex Analysis

Download Explorations in Complex Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1614441081
Total Pages : 373 pages
Book Rating : 4.6/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Explorations in Complex Analysis by : Michael A. Brilleslyper

Download or read book Explorations in Complex Analysis written by Michael A. Brilleslyper and published by American Mathematical Soc.. This book was released on 2012-12-31 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research topics in the book include complex dynamics, minimal surfaces, fluid flows, harmonic, conformal, and polygonal mappings, and discrete complex analysis via circle packing. The nature of this book is different from many mathematics texts: the focus is on student-driven and technology-enhanced investigation. Interlaced in the reading for each chapter are examples, exercises, explorations, and projects, nearly all linked explicitly with computer applets for visualization and hands-on manipulation.

Official Summary of Security Transactions and Holdings Reported to the Securities and Exchange Commission Under the Securities Exchange Act of 1934 and the Public Utility Holding Company Act of 1935

Download Official Summary of Security Transactions and Holdings Reported to the Securities and Exchange Commission Under the Securities Exchange Act of 1934 and the Public Utility Holding Company Act of 1935 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 802 pages
Book Rating : 4.:/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Official Summary of Security Transactions and Holdings Reported to the Securities and Exchange Commission Under the Securities Exchange Act of 1934 and the Public Utility Holding Company Act of 1935 by : United States. Securities and Exchange Commission

Download or read book Official Summary of Security Transactions and Holdings Reported to the Securities and Exchange Commission Under the Securities Exchange Act of 1934 and the Public Utility Holding Company Act of 1935 written by United States. Securities and Exchange Commission and published by . This book was released on 1998 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A Course in Metric Geometry

Download A Course in Metric Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821821296
Total Pages : 434 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Course in Metric Geometry by : Dmitri Burago

Download or read book A Course in Metric Geometry written by Dmitri Burago and published by American Mathematical Soc.. This book was released on 2001 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Metric geometry" is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Caratheodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces).

A Guide to the Classification Theorem for Compact Surfaces

Download A Guide to the Classification Theorem for Compact Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642343643
Total Pages : 184 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis A Guide to the Classification Theorem for Compact Surfaces by : Jean Gallier

Download or read book A Guide to the Classification Theorem for Compact Surfaces written by Jean Gallier and published by Springer Science & Business Media. This book was released on 2013-02-05 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincaré characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology.

Lectures on K3 Surfaces

Download Lectures on K3 Surfaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316797252
Total Pages : 499 pages
Book Rating : 4.3/5 (167 download)

DOWNLOAD NOW!


Book Synopsis Lectures on K3 Surfaces by : Daniel Huybrechts

Download or read book Lectures on K3 Surfaces written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2016-09-26 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.