Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Cookbook With Probability One
Download A Cookbook With Probability One full books in PDF, epub, and Kindle. Read online A Cookbook With Probability One ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A Cookbook with Probability One by : Damiano Rossello
Download or read book A Cookbook with Probability One written by Damiano Rossello and published by Springer Nature. This book was released on with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Probability Theory in Finance by : Seán Dineen
Download or read book Probability Theory in Finance written by Seán Dineen and published by American Mathematical Soc.. This book was released on 2013-05-22 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of the Black-Scholes model and formula is pervasive in financial markets. There are very few undergraduate textbooks available on the subject and, until now, almost none written by mathematicians. Based on a course given by the author, the goal of
Book Synopsis A Modern Introduction to Probability and Statistics by : F.M. Dekking
Download or read book A Modern Introduction to Probability and Statistics written by F.M. Dekking and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Book Synopsis Chance, Luck, and Statistics by : Horace C. Levinson
Download or read book Chance, Luck, and Statistics written by Horace C. Levinson and published by Courier Corporation. This book was released on 2001-01-01 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: In simple, non-technical language, this volume explores the fundamentals governing chance and applies them to sports, government, and business. Topics includenbsp;the theory of probability in relation to superstitions, betting odds, warfare,nbsp;social problems, stocks, and other areas. "Clear and lively ...nbsp;remarkably accurate." —Scientific Monthly.
Book Synopsis Random Phenomena by : Babatunde A. Ogunnaike
Download or read book Random Phenomena written by Babatunde A. Ogunnaike and published by CRC Press. This book was released on 2011-05-20 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of the problems that engineers face involve randomly varying phenomena of one sort or another. However, if characterized properly, even such randomness and the resulting uncertainty are subject to rigorous mathematical analysis. Taking into account the uniquely multidisciplinary demands of 21st-century science and engineering, Random Phenomena: Fundamentals of Probability and Statistics for Engineers provides students with a working knowledge of how to solve engineering problems that involve randomly varying phenomena. Basing his approach on the principle of theoretical foundations before application, Dr. Ogunnaike presents a classroom-tested course of study that explains how to master and use probability and statistics appropriately to deal with uncertainty in standard problems and those that are new and unfamiliar. Giving students the tools and confidence to formulate practical solutions to problems, this book offers many useful features, including: Unique case studies to illustrate the fundamentals and applications of probability and foster understanding of the random variable and its distribution Examples of development, selection, and analysis of probability models for specific random variables Presentation of core concepts and ideas behind statistics and design of experiments Selected "special topics," including reliability and life testing, quality assurance and control, and multivariate analysis As classic scientific boundaries continue to be restructured, the use of engineering is spilling over into more non-traditional areas, ranging from molecular biology to finance. This book emphasizes fundamentals and a "first principles" approach to deal with this evolution. It illustrates theory with practical examples and case studies, equipping readers to deal with a wide range of problems beyond those in the book. About the Author: Professor Ogunnaike is Interim Dean of Engineering at the University of Delaware. He is the recipient of the 2008 American Automatic Control Council's Control Engineering Practice Award, the ISA's Donald P. Eckman Education Award, the Slocomb Excellence in Teaching Award, and was elected into the US National Academy of Engineering in 2012.
Download or read book R Cookbook written by Paul Teetor and published by "O'Reilly Media, Inc.". This book was released on 2011-03-03 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author
Download or read book R Cookbook written by JD Long and published by "O'Reilly Media, Inc.". This book was released on 2019-06-21 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perform data analysis with R quickly and efficiently with more than 275 practical recipes in this expanded second edition. The R language provides everything you need to do statistical work, but its structure can be difficult to master. These task-oriented recipes make you productive with R immediately. Solutions range from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem and includes a discussion that explains the solution and provides insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an intermediate user, this book will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform basic functions Simplify data input and output Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data
Book Synopsis Probability for Statistics and Machine Learning by : Anirban DasGupta
Download or read book Probability for Statistics and Machine Learning written by Anirban DasGupta and published by Springer Science & Business Media. This book was released on 2011-05-17 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.
Book Synopsis A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing (Ninth Edition) by : Burton G. Malkiel
Download or read book A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing (Ninth Edition) written by Burton G. Malkiel and published by W. W. Norton & Company. This book was released on 2007-12-17 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated with a new chapter that draws on behavioral finance, the field that studies the psychology of investment decisions, the bestselling guide to investing evaluates the full range of financial opportunities.
Download or read book R Cookbook written by JD Long and published by O'Reilly Media. This book was released on 2019-06-21 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perform data analysis with R quickly and efficiently with more than 275 practical recipes in this expanded second edition. The R language provides everything you need to do statistical work, but its structure can be difficult to master. These task-oriented recipes make you productive with R immediately. Solutions range from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem and includes a discussion that explains the solution and provides insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an intermediate user, this book will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform basic functions Simplify data input and output Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data
Download or read book Excel Cookbook written by Dawn Griffiths and published by "O'Reilly Media, Inc.". This book was released on 2024-05-14 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filled with tips, tricks, and techniques, this easy-to-use book is the perfect resource for intermediate to advanced users of Excel. You'll find complete recipes for more than a dozen topics covering formulas, PivotTables, charts, Power Query, and more. Each recipe poses a particular problem and outlines a solution that you can put to use right away—without having to comb through tutorial pages. Whether you're a data analyst, project manager, or financial analyst, author Dawn Griffiths directs you straight to the answers you need. Ideal as a quick reference, Excel Cookbook is also perfect for learning how to work in a more efficient way, leading to greater productivity on the job. With this book, you'll jump in and get answers to your questions—fast. This cookbook shows you how to: Get the most out of Excel's features Address complex data problems in the best way possible Collect, manage, and analyze data from a variety of sources Use functions and formulas with ease—including dynamic array and lambda formulas Analyze data with PivotTables, Power Pivot, and more Import and transform data with Power Query Write custom functions and automate Excel with VBA
Book Synopsis Practical Data Science Cookbook by : Prabhanjan Tattar
Download or read book Practical Data Science Cookbook written by Prabhanjan Tattar and published by Packt Publishing Ltd. This book was released on 2017-06-29 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 85 recipes to help you complete real-world data science projects in R and Python About This Book Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data Get beyond the theory and implement real-world projects in data science using R and Python Easy-to-follow recipes will help you understand and implement the numerical computing concepts Who This Book Is For If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python. What You Will Learn Learn and understand the installation procedure and environment required for R and Python on various platforms Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python Build a predictive model and an exploratory model Analyze the results of your model and create reports on the acquired data Build various tree-based methods and Build random forest In Detail As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use. Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis—R and Python. Style and approach This step-by-step guide to data science is full of hands-on examples of real-world data science tasks. Each recipe focuses on a particular task involved in the data science pipeline, ranging from readying the dataset to analytics and visualization
Download or read book R Cookbook written by Paul Teetor and published by O'Reilly Media. This book was released on 2011-03-03 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author
Book Synopsis The Regularization Cookbook by : Vincent Vandenbussche
Download or read book The Regularization Cookbook written by Vincent Vandenbussche and published by Packt Publishing Ltd. This book was released on 2023-07-31 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methodologies and recipes to regularize any machine learning and deep learning model using cutting-edge technologies such as stable diffusion, Dall-E and GPT-3 Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn to diagnose the need for regularization in any machine learning model Regularize different ML models using a variety of techniques and methods Enhance the functionality of your models using state of the art computer vision and NLP techniques Book Description Regularization is an infallible way to produce accurate results with unseen data, however, applying regularization is challenging as it is available in multiple forms and applying the appropriate technique to every model is a must. The Regularization Cookbook provides you with the appropriate tools and methods to handle any case, with ready-to-use working codes as well as theoretical explanations. After an introduction to regularization and methods to diagnose when to use it, you'll start implementing regularization techniques on linear models, such as linear and logistic regression, and tree-based models, such as random forest and gradient boosting. You'll then be introduced to specific regularization methods based on data, high cardinality features, and imbalanced datasets. In the last five chapters, you'll discover regularization for deep learning models. After reviewing general methods that apply to any type of neural network, you'll dive into more NLP-specific methods for RNNs and transformers, as well as using BERT or GPT-3. By the end, you'll explore regularization for computer vision, covering CNN specifics, along with the use of generative models such as stable diffusion and Dall-E. By the end of this book, you'll be armed with different regularization techniques to apply to your ML and DL models. What you will learn Diagnose overfitting and the need for regularization Regularize common linear models such as logistic regression Understand regularizing tree-based models such as XGBoos Uncover the secrets of structured data to regularize ML models Explore general techniques to regularize deep learning models Discover specific regularization techniques for NLP problems using transformers Understand the regularization in computer vision models and CNN architectures Apply cutting-edge computer vision regularization with generative models Who this book is for This book is for data scientists, machine learning engineers, and machine learning enthusiasts, looking to get hands-on knowledge to improve the performances of their models. Basic knowledge of Python is a prerequisite.
Book Synopsis An Introduction to Measure Theory by : Terence Tao
Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Book Synopsis Jacaranda Maths Quest 12 Mathematical Methods VCE Units 3 and 4 3e learnON and Print by : Margaret Swale
Download or read book Jacaranda Maths Quest 12 Mathematical Methods VCE Units 3 and 4 3e learnON and Print written by Margaret Swale and published by John Wiley & Sons. This book was released on 2022-11-21 with total page 771 pages. Available in PDF, EPUB and Kindle. Book excerpt: Jacaranda Maths Quest 12 Mathematical Methods VCE Units 3 and 4 Everything your students need to succeed. The best Mathematics series for the new VCE Study Design. Developed by expert Victorian teachers for, VCE students. Get exam ready: past VCAA exam questions (all since 2013) Students can start preparing from lesson one, with past VCAA exam questions embedded in every lesson. Practice, customisable SACs available for all Units to build student competence and confidence. Learn online with Australia’s most powerful learning platform, learnON Be confident your students can get unstuck and progress, in class or at home. For every question online they receive immediate feedback and fully worked solutions. Teacher-led videos to learn and re-learn. Instant reports make tracking progress simple. Combine units flexibly with the Jacaranda Supercourse An Australian first, build the course you’ve always wanted with the Jacaranda Supercourse. You can combine all Methods Units 1 to 4, so students can move backwards and forwards freely. Or Methods and General Units 1 & 2 for when students switch courses. The possibilities are endless!
Book Synopsis PyTorch 1.x Reinforcement Learning Cookbook by : Yuxi (Hayden) Liu
Download or read book PyTorch 1.x Reinforcement Learning Cookbook written by Yuxi (Hayden) Liu and published by Packt Publishing Ltd. This book was released on 2019-10-31 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes Key FeaturesUse PyTorch 1.x to design and build self-learning artificial intelligence (AI) modelsImplement RL algorithms to solve control and optimization challenges faced by data scientists todayApply modern RL libraries to simulate a controlled environment for your projectsBook Description Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems. What you will learnUse Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problemsDevelop a multi-armed bandit algorithm to optimize display advertisingScale up learning and control processes using Deep Q-NetworksSimulate Markov Decision Processes, OpenAI Gym environments, and other common control problemsSelect and build RL models, evaluate their performance, and optimize and deploy themUse policy gradient methods to solve continuous RL problemsWho this book is for Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.