Zinc Oxide Based Nanowire Arrays for Selective Detection of Multiple Gaseous Analytes at Elevated Temperature

Download Zinc Oxide Based Nanowire Arrays for Selective Detection of Multiple Gaseous Analytes at Elevated Temperature PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Zinc Oxide Based Nanowire Arrays for Selective Detection of Multiple Gaseous Analytes at Elevated Temperature by : Bo Zhang

Download or read book Zinc Oxide Based Nanowire Arrays for Selective Detection of Multiple Gaseous Analytes at Elevated Temperature written by Bo Zhang and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc oxide (ZnO) based nanostructures represent an important class of gas sensor materials, due to their high surface-to-volume ratio, significant surface band structure bending upon gaseous analyte exposures, good mobility of charge carriers, and good structural stability at elevated temperature. Their usually surface-dominant sensing processes entail the important roles played by nanostructure size, defects, morphologies, and surface absorbate energetics and dynamics. In this dissertation, based on ZnO nanowire array as a gas sensing platform, rational decoration of electronic sensitizers, such as Au nanoparticles, and semiconducting oxide, such as Fe2O3 nanoparticles, has been employed to boost its electrical sensing performance. Using NO2 as the probe gaseous analyte, both catalytic spill-over and hetero-interface charge transfer regulation have been found effective strategies for significantly improving the sensor performance. The structure-function correlations of these nanowire array sensors have been established for understanding the surface catalysis and associated surface structural evolution in the recoverable sensing dynamics. Specifically, formation of hetero-interfaces of Au-ZnO and Au-Fe2O3-ZnO interfaces endows the pristine ZnO with enhanced sensitivity and improved detection limit. The intermediate nitrate formations were identified in the Au-ZnO hetero-interface region during the sensor exposure to the NO2 probe molecules. The surface local crater formation was revealed on ZnO nanowire surfaces due to the nitrate formation associated with the Au nanoparticles. Such an observation is related to both homogeneous gas phase etching and Au-catalyzed heterogeneous nitrate formation that involve catalytic spillover, strong metal-support interaction, and transient nitrate formation that leads to interfacial material loss or migration under NO2 atmosphere. To improve the thermal instability of Au nanoparticle and allow a higher operation temperature range, the Fe2O3 was introduced as the support for Au nanoparticles. Such an Au-Fe2O3 hybrid nanoparticle decoration has significantly increased the NO2 gas sensor response by 42 times as compared to the Au decorated ZnO nanowires, as high as 74500. Meanwhile, the operating temperature of nanowire sensors was successfully extended to 600 oC. Finally, to address the crosstalk among various gaseous analytes in the nanosensor, a single bimodular sensor has been designed and demonstrated for smart differentation of multiple oxidative analytes by relating the resistance-metric mode to impedance-metric mode. The differentiative and correlated nature between these response signals allows such a single sensor platform to differentiate these oxidative gases accurately and robustly. Thus, the characteristic signature for the target analyte is successfully extracted by incorporating the resistive response and frequency-dependent dielectric response via Electrochemical Impedance Spectroscopy (EIS). The differentiative and correlated nature between these response signals allows such a single sensor platform to differentiate these oxidative gases accurately and robustly. Linear and non-linear decision boundaries were subsequently established over a large gas-concentration range from 2 ppm to 3 % through a combination of principal component analysis and artificial neural network training. In addition to single analyte analysis, the on-board interrogation is achieved towards gas mixture (e.g., NO and NO2) through correlation between the electrical and electrochemical responses. Facilitated by a graphical method, the detailed concentration of component gas could be quantified using the measured responses of NOx mixture in the bimodular sensing on such a single nano-array sensor platform.

Metal Oxide Nanostructures

Download Metal Oxide Nanostructures PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 012811505X
Total Pages : 331 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Metal Oxide Nanostructures by : Daniela Nunes

Download or read book Metal Oxide Nanostructures written by Daniela Nunes and published by Elsevier. This book was released on 2018-11-01 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application. Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures Provides an in-depth overview of novel applications, including chromogenics, electronics and energy

Enhancement of Nanocrystalline Zinc Oxide Based Electronic Gas Sensor by Surface Modification

Download Enhancement of Nanocrystalline Zinc Oxide Based Electronic Gas Sensor by Surface Modification PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 173 pages
Book Rating : 4.:/5 (894 download)

DOWNLOAD NOW!


Book Synopsis Enhancement of Nanocrystalline Zinc Oxide Based Electronic Gas Sensor by Surface Modification by : Yue Hou

Download or read book Enhancement of Nanocrystalline Zinc Oxide Based Electronic Gas Sensor by Surface Modification written by Yue Hou and published by . This book was released on 2014 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing concerns of industrial safety, chemical control and environmental pollution are spurring demand for high performance gas sensors. Growing use of gas sensors is making gas sensors on demand. After decades of research and development activities, semiconductor based gas sensors are now used in a variety of applications. However, challenges still remain in the area of sensitivity, selectivity, response and recovery speeds and power consumption. Therefore, improvement of metal oxide gas sensors by the incorporation of different technology is important. In this research, modification of metal oxide semiconductor based gas sensor by impurity doping, laser irradiation, and plasma treatment was investigated. Zinc oxide (ZnO) is an n-type semiconductor with a wide direct band gap (~3.3 eV) and large binding energy (~60 meV). Due to its superior electrical properties and chemical stability, ZnO has been considered one of the most promising materials for gas sensor applications. ZnO thin films have been fabricated by different techniques, such as rf magnetron sputtering, pulsed laser deposition, molecular beam epitaxy, and sol-gel. Sol-gel is a powerful alternative for vacuum deposition. The purpose of this research was to enhance properties and gas sensor performance of nanocrystalline so-gel derived ZnO thin films via surface modification techniques. The effects of process conditions, impurity doping, laser irradiation, laser doping and plasma treatment on properties and gas sensor performance were investigated. The gas sensor performance of ZnO thin films was investigated at different operating temperatures for various reducing and oxidizing gases such as H2, NH3, CH4 and NOx. Al-doped ZnO thin films were prepared using the sol-gel process by changing the Al concentration from 0 to 5.0 at% using two different Zn precursors. It was found that 3.0 at% Al-doped ZnO films had optimum properties such as high electrical conductivity, crystallinity, high sensing response and short response time for ZnO films derived with both Zn precursors. Ga-doped ZnO thin films were also presented by changing the concentration of Ga from 0.1 to 1.0 at%. The gas sensing behavior was investigated at an operating temperature of 130oC. It was found that the 0.3 at% Ga-doped ZnO thin film sensor had more than a 40% higher sensing response and a shorter response time than the sensors made with as-deposited films. Laser irradiation was utilized as a novel heat treatment method in this dissertation. A pulsed laser system with a wavelength of 532 nm was used as the irradiation source. Laser irradiation produced two kinds of Al-doped ZnO films depending on the laser energy level. The impact of laser irradiation was also varied according to the film thickness. The Al-doped ZnO sensors exhibited enhanced sensor performance with optimum laser fluence compared with that of as-deposited sensors. The results suggested that the crystallinity of the Al-doped ZnO thin films was essential to achieve an optimum gas detection capability. A laser doping process using a pre-deposited Al precursor layer for ZnO thin films was also investigated. Plasma treatment was utilized in the research with the intention to adjust the number of intrinsic defects in ZnO films. Both O2 and H2 plasmas were carried out with the treatment time varying from 3 to 15 min. The gas sensor performance was investigated for NH3 and NOx at various concentrations. An improvement of more than 50% in sensing response was observed with the optimum treatment time for NH3 detection. The impact of H2 plasma treatment of ZnO sensors on its gas sensor performance was also studied. The selectivity was studied for a likelihood mixture of reducing gases. The results indicated that ZnO sensors had a low detection limit towards NH3. It was found that the selectivity of these reducing gases was in the order of NH3> H2> CH4. However, unless high concentration of NH3 exposure is a factor, ZnO sensors are selective respond to H2. Furthermore, the ZnO sensors are also capable of discriminating different gases such as NH3, H2, CH4 and NOx. This research involves different techniques, which have been employed on the ZnO thin film based gas sensors in order to enhance the gas sensing characteristics such as sensing response and response time. As expected, the ZnO sensors exhibited high response, short response time and decent selectivity toward target gases with optimum treatment conditions. The results also suggested that the ZnO sensors were capable of detecting ppm level gases at relatively low operating temperature range (100 ~ 200oC), which is beneficial in many applications. Therefore, these techniques can be utilized to manufacture gas sensors using metal oxide semiconductors.

Semiconductor Gas Sensors

Download Semiconductor Gas Sensors PDF Online Free

Author :
Publisher : Woodhead Publishing
ISBN 13 : 0081025602
Total Pages : 510 pages
Book Rating : 4.0/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Semiconductor Gas Sensors by : Raivo Jaaniso

Download or read book Semiconductor Gas Sensors written by Raivo Jaaniso and published by Woodhead Publishing. This book was released on 2019-09-24 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Gas Sensors, Second Edition, summarizes recent research on basic principles, new materials and emerging technologies in this essential field. Chapters cover the foundation of the underlying principles and sensing mechanisms of gas sensors, include expanded content on gas sensing characteristics, such as response, sensitivity and cross-sensitivity, present an overview of the nanomaterials utilized for gas sensing, and review the latest applications for semiconductor gas sensors, including environmental monitoring, indoor monitoring, medical applications, CMOS integration and chemical warfare agents. This second edition has been completely updated, thus ensuring it reflects current literature and the latest materials systems and applications. Includes an overview of key applications, with new chapters on indoor monitoring and medical applications Reviews developments in gas sensors and sensing methods, including an expanded section on gas sensor theory Discusses the use of nanomaterials in gas sensing, with new chapters on single-layer graphene sensors, graphene oxide sensors, printed sensors, and much more

Zinc Oxide Nanostructures

Download Zinc Oxide Nanostructures PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9814411345
Total Pages : 225 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Zinc Oxide Nanostructures by : Magnus Willander

Download or read book Zinc Oxide Nanostructures written by Magnus Willander and published by CRC Press. This book was released on 2014-07-22 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc oxide (ZnO) in its nanostructured form is emerging as a promising material with great potential for the development of many smart electronic devices. This book presents up-to-date information about various synthesis methods to obtain device-quality ZnO nanostructures. It describes both high-temperature (over 100 C) and low-temperature (under

Noble Metal-Metal Oxide Hybrid Nanoparticles

Download Noble Metal-Metal Oxide Hybrid Nanoparticles PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128141352
Total Pages : 674 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Noble Metal-Metal Oxide Hybrid Nanoparticles by : Satyabrata Mohapatra

Download or read book Noble Metal-Metal Oxide Hybrid Nanoparticles written by Satyabrata Mohapatra and published by Elsevier. This book was released on 2018-10-11 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications sets out concepts and emerging applications of hybrid nanoparticles in biomedicine, antibacterial, energy storage and electronics. The hybridization of noble metals (Gold, Silver, Palladium and Platinum) with metal-oxide nanoparticles exhibits superior features when compared to individual nanoparticles. In some cases, metal oxides act as semiconductors, such as nano zinc oxide or titanium oxide nanoparticles, where their hybridization with silver nanoparticles, enhanced significantly their photocatalytic efficiency. The book highlights how such nanomaterials are used for practical applications. Examines the properties of metal-metal oxide hybrid nanoparticles that make them so adaptable Explores the mechanisms by which nanoparticles interact with each other, showing how these can be exploited for practical applications Shows how metal oxide hybrid nanomaterials are used in a range of industry sectors, including energy, the environment and healthcare

Development of Zinc Oxide Nanowire Arrays on Flexible Conductive Substrates for Energy Applications

Download Development of Zinc Oxide Nanowire Arrays on Flexible Conductive Substrates for Energy Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 272 pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Development of Zinc Oxide Nanowire Arrays on Flexible Conductive Substrates for Energy Applications by : Santhosh Sankaranarayanan Nair

Download or read book Development of Zinc Oxide Nanowire Arrays on Flexible Conductive Substrates for Energy Applications written by Santhosh Sankaranarayanan Nair and published by . This book was released on 2013 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: AbstractNano/micro scale devices have attracted a lot of interest due to the emergence of wearable/portable devices. One of the challenging tasks in the miniaturization is to reduce the size and weight of the powering unit. Harvesting mechanical energy and making the device a self-powered one, not only helps in reducing the size/weight ratio but also in designing a maintenance free and sustainable device. Piezoelectric energy harvesting research has gained new momentum with the discovery of piezoelectric charges in semiconducting zinc oxide nanowires (ZnO NWs). Semiconducting ZnO NWs provide an opportunity to integrate with electronic devices and circuits directly unlike non-conducting traditional piezoelectric materials. The coupling of piezoelectric and semiconducting properties was used to design energy generating devices called nanogenerators (NGs). The basic working principle involves application of a mechanical force to create a piezopotential across the wurtzite structured NWs and this piezopotential is channelled employing metal-semiconducting pathways such as p-n junctions. These junctions also play a key role in various other devices such as solar cells, capacitors, fuel cells and water splitting devices. This thesis concentrates mainly on the fabrication of semiconducting piezoelectric nanowires on functionalised flexible substrates and the junctions thereby obtained. It is based on the idea that ZnO NWs can be grown directly on poly(3,4-ethylendioxydithiophene) (PEDOT) or graphene-functionalised substrates using low temperature aqueous synthesis. ZnO NWs can be fabricated using a low temperature aqueous processing route on flexible substrates and fibres. ZnO creates a wide variety of nanostructures due to the polar terminating layers and the surface chemistry of the substrate. The position of the substrate in the growth solution was therefore investigated and found to dictate the morphology and aspect ratio of the nanostructure in seed mediated low temperature aqueous synthesis on polyethersulfone (PES)-based flexible substrates. Vapour phase polymerisation was used to fabricate PEDOT coated 2-D and 3-D PES. To produce graphene-coated flexible substrates, colloidal graphene was synthesized and functionalised onto 2-D and 3-D PES using layer by layer technique (LbL) with polyelectrolytes such as polyallylamine hydrochloride (PAH) and polystyrenesulfonate (PSS). The LbL modification was achieved by exploiting the surface functional groups in the colloidal graphene. Various surface treatments and heat treatments were carried out to tune the system to obtain higher conductivity. ZnO seed solution was coated and NWs were grown on the functionalized substrates. The newly formed junctions were characterised for their I-V characteristics to determine if they have similar function to junctions formed with ZnO on ITO or metals. ZnO NWs grown on PEDOT shows an ohmic contact and gives linear I-V characteristics. On the other hand when a PEDOT coated substrate was made to form a junction at the top of the ZnO NWs, it forms a Schottky contact and gives rectification. However the ZnO-graphene interface shows a Schottky contact. When a top graphene electrode was made to form a junction with ZnO NWs grown on graphene, the I-V characteristics shows a symmetrical and rectifying junction on both sides. Nanogenerators were designed and tested using ZnO NWs grown on PEDOT coated 2-D and 3-D PES. Thus, the fabricated PEDOT-NGs produced a higher current by a factor of 106 and a 102 times increase in the voltage compared to the traditional ITO grown NG design. Vapour phase polymerised PEDOT on flexible substrates eliminated the use of expensive and less efficient electrodes such as ITO and Au. It has also been shown that this approach can be extended to fibre substrates by sandwiching them between PEDOT sheets which make them more suitable for wearable energy harvesting with 102 times improved efficiency compared to ITO sandwiched fibre NG. The higher performance of PEDOT NGs was accounted by the new junctions formed at the interfaces which reduce the screening of free charge carriers in the system. Graphene NGs were fabricated using gold top electrodes. The NG fabricated on surface treated PES was found to outperform the NG fabricated without surface treatment due to the higher conductivity of the surface treated electrode. The output of the surface treated NG was found to be much less than the ITO based or PEDOT based NGs.

Metal Oxide Nanomaterials for Chemical Sensors

Download Metal Oxide Nanomaterials for Chemical Sensors PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146145395X
Total Pages : 559 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Metal Oxide Nanomaterials for Chemical Sensors by : Michael A. Carpenter

Download or read book Metal Oxide Nanomaterials for Chemical Sensors written by Michael A. Carpenter and published by Springer Science & Business Media. This book was released on 2012-11-09 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of reaction mechanisms, and (v) technical development and integration challenges in the fabrication of sensing arrays and devices.

Microsystems and Nanotechnology

Download Microsystems and Nanotechnology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642182933
Total Pages : 1011 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Microsystems and Nanotechnology by : Zhaoying Zhou

Download or read book Microsystems and Nanotechnology written by Zhaoying Zhou and published by Springer Science & Business Media. This book was released on 2012-08-30 with total page 1011 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Microsystems and Nanotechnology” presents the latest science and engineering research and achievements in the fields of microsystems and nanotechnology, bringing together contributions by authoritative experts from the United States, Germany, Great Britain, Japan and China to discuss the latest advances in microelectromechanical systems (MEMS) technology and micro/nanotechnology. The book is divided into five parts – the fundamentals of microsystems and nanotechnology, microsystems technology, nanotechnology, application issues, and the developments and prospects – and is a valuable reference for students, teachers and engineers working with the involved technologies. Professor Zhaoying Zhou is a professor at the Department of Precision Instruments & Mechanology , Tsinghua University , and the Chairman of the MEMS & NEMS Society of China. Dr. Zhonglin Wang is the Director of the Center for Nanostructure Characterization, Georgia Tech, USA. Dr. Liwei Lin is a Professor at the Department of Mechanical Engineering, University of California at Berkeley, USA.

ZnO Coated Nanospring-based Gas Sensors

Download ZnO Coated Nanospring-based Gas Sensors PDF Online Free

Author :
Publisher :
ISBN 13 : 9781339013374
Total Pages : 180 pages
Book Rating : 4.0/5 (133 download)

DOWNLOAD NOW!


Book Synopsis ZnO Coated Nanospring-based Gas Sensors by : Pavel Viktorovich Bakharev

Download or read book ZnO Coated Nanospring-based Gas Sensors written by Pavel Viktorovich Bakharev and published by . This book was released on 2015 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current research demonstrates new techniques for characterization of electrical transport properties of the metal oxide polycrystalline structures, gas and vapor phase kinetics, surface processes such as gas-surface, vapor-surface interactions and redox processes by applying novel gas sensing devices. Real-time sensor electrical response characteristics obtained under highly controlled laboratory conditions have been used to characterize corresponding surface interactions and electrical properties of the gas sensitive structures. Novel redox chemical sensors (chemiresistors) have been fabricated with 3-D and 1-D ZnO coated nanospring (NS) structures. Silica NSs served as insulating scaffolding for a ZnO gas sensitive layer and has been grown via a vapor-liquid-solid (VLS) mechanism by using a chemical vapor deposition (CVD) technique. The NSs have been coated with polycrystalline ZnO by atomic layer deposition (ALD). The chemiresistor devices have been thoroughly characterized in terms of their crystal structures (by XRD, FESEM, TEM, and ellipsometry) and their electrical response properties. A 3-D gas sensor has been constructed from a xenon light bulb by coating it with a 3-D zinc oxide coated silica nanospring mat, where the xenon light bulb served as a sensor heater. This inexpensive sensor platform has been used to characterize gas-solid, vapor-solid, and redox processes. The optimal temperature of the gas sensitive ZnO layer, the temperature of the vapor-gas mixture and the crystal structure of the gas sensitive layer have been determined to reach the highest sensitivity of the gas sensors. The activation energy of toluene oxidation (Ed) on the ZnO surface and the activation energy of oxidation (Ea) of the depleted ZnO surface have been determined and analyzed. A 1-D chemiresistor has been fabricated with a single ZnO coated silica nanospring by photolithography. The question of sensor sensitivity of MOS nanomaterials and MOS thin films has been addressed. The experimental and computational analyses of the sensing properties of the 3-D (nanospring-based) and flat thin films structures show that the complexity and periodic boundary conditions of the nanospring-based devices result in a lower detection limit, while flat thin films exhibit higher sensitivity to small analyte concentration fluctuations. Our analysis shows that the productive approach to fabrication of integrated sensors (electronic noses) is to use both the structures (3D and flat geometries) as the receptors for a prompt and reliable detection and recognition of the target chemical compounds. Analog lock-in amplifier (LIA) AC measurements of the electrical response have been performed to significantly improve the signal-to-noise ratio (SNR) and reduce the detection limit of the single ZnO coated nanospring chemiresistor from the ppm to the ppb analyte concentration ranges. The LIA-based sensor signal recognition technique has shown to extend the capabilities of the gas sensor array for a linear discrimination analysis (LDA), an independent component analysis (ICA), a principal component analysis (PCA) and other multiple odor recognition methods.

Multifunctional Oxide-Based Materials: From Synthesis to Application

Download Multifunctional Oxide-Based Materials: From Synthesis to Application PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039213970
Total Pages : 204 pages
Book Rating : 4.0/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Multifunctional Oxide-Based Materials: From Synthesis to Application by : Teofil Jesionowski

Download or read book Multifunctional Oxide-Based Materials: From Synthesis to Application written by Teofil Jesionowski and published by MDPI. This book was released on 2019-09-03 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with novel aspects and perspectives in metal oxide and hybrid material fabrication. The contributions are mainly focused on the search for a new group of advanced materials with designed physicochemical properties, especially an expanded porous structure and defined surface activity. The proposed technological procedures result in an enhanced activity of the synthesized hybrid materials, which is of great importance when considering their potential fields of application. The use of such materials in different technological disciplines, including aspects associated with environmental protection, allows for the verification of the proposed synthesis method. Thus, it can be stated that those aspects are of interdisciplinary character and may be located at the interface of three scientific disciplines—chemistry, materials science, and engineering—as well as environmental protection. Furthermore, the presented scientific scope is in some way an answer to the continuous demand for such types of materials and opens new perspectives for their practical use

Disposable Electrochemical Sensors for Healthcare Monitoring

Download Disposable Electrochemical Sensors for Healthcare Monitoring PDF Online Free

Author :
Publisher : Royal Society of Chemistry
ISBN 13 : 1839163143
Total Pages : 466 pages
Book Rating : 4.8/5 (391 download)

DOWNLOAD NOW!


Book Synopsis Disposable Electrochemical Sensors for Healthcare Monitoring by : Dr A. Pandikumar

Download or read book Disposable Electrochemical Sensors for Healthcare Monitoring written by Dr A. Pandikumar and published by Royal Society of Chemistry. This book was released on 2021-05-05 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Disposable electrodes have been widely used as a sensing platform in electrical and electrochemical sensors owing to the possibility of quantitative detection using clinical biomarkers with high precision, sensitivity and reproducibility, which are necessary for accurate diagnosis of the health condition of an individual. This book focusses on the emerging disposable electrochemical sensors in the health sector and the advancement of analytical devices to monitor diabetic, cancer and cardiovascular patients using different nanomaterials. It discusses the upcoming strategies, advantages and the limitations of the existing devices using disposable electrodes. Uniquely, it covers in-depth knowledge of mechanistic features of various designs of screen-printing electrodes and the material aspects required of sensors developed for the healthcare field. It also looks at the portable devices using a variety of materials and the future directions for research in this area. Appealing to the health care industry, this book is aimed at academic and research institutes at both the graduate and postgraduate level. The contributors are leading experts in the field and they are providing guidance for the next decade of research in the field of disposable electrochemical biosensors.

Chemical Sensing with Solid State Devices

Download Chemical Sensing with Solid State Devices PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 032313985X
Total Pages : 573 pages
Book Rating : 4.3/5 (231 download)

DOWNLOAD NOW!


Book Synopsis Chemical Sensing with Solid State Devices by : Marc J. Madou

Download or read book Chemical Sensing with Solid State Devices written by Marc J. Madou and published by Elsevier. This book was released on 2012-12-02 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a lucid presentation for chemists, electrical engineers, surface scientists, and solid-state physicists, of the fundamentals underlying the construction of simple and small chemical sensors. The first part of the book is a review of the theoretical background in solid state physics, chemistry and electronics. Semiconductor and solid electrolyte bulk models are reviewed as well as solid/gas and solid/liquid interface models. Membranes and catalysis theory are also covered expansively. The second part is a discussion of more complete sensor devices, their essential components, and of the important developments in this area over the last fifteen to twenty years. The book provides guidance through the multidisciplinary world of chemical sensors. It should be understandable to students with some training in physics and chemistry and a general knowledge of electronics. Finally, comments on economic considerations in the development of new sensor products and suggestionsfor future research and development should be of value to company R&D planners.

Gas Sensors

Download Gas Sensors PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401127379
Total Pages : 413 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Gas Sensors by : G. Sberveglieri

Download or read book Gas Sensors written by G. Sberveglieri and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: There were two reasons that induced me to plan and to organize this book, the first was the lack of a text entirely devoted to the subject of gas sensors, notwithstanding some books devoted to the various kind of chemical sensors have recently been published. The second reason was the need of introducing the basic topics of gas detection mechanisms to a growing number of researchers active in research and development laboratories of industries and uni versities. The field of chemical sensors is indeed in fast and consistent growth, as it is proved by the increased number of participants to the congresses that were recently held on this subject, namely the Third Meeting on Chemical Sensors (September 24 - 26, 1990, Cleveland), Transducers' 91 (June 24 - 27, 1991, S. Francisco) and EUROSENSORS V (September 30 - October 3, 1991, Rome). Therefore, this book is mainly intended as a reference text for researchers with a MS degree in physics, chemistry and electrical engineering; it reports the last progresses in the R. & D. and in the technology of gas sensors. I choose to deal specifically with the topic of gas sensors because these devices show a very large number of applications in the domestic and industrial field and they are characterized by a great effort of research and development.

Gas Sensors

Download Gas Sensors PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1789851599
Total Pages : 170 pages
Book Rating : 4.7/5 (898 download)

DOWNLOAD NOW!


Book Synopsis Gas Sensors by : Sher Bahadar Khan

Download or read book Gas Sensors written by Sher Bahadar Khan and published by BoD – Books on Demand. This book was released on 2020-03-25 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the applications of nanomaterials in the fabrication of gas sensors. It covers recent developments of different materials used to design gas sensors, such as conducting polymers, semiconductors, as well as layered and nanosized materials. The widespread applications of various gas sensors for the detection of toxic gases are also discussed. The book provides a concise but thorough coverage of nanomaterials applications and utilization in gas sensors. In addition, it overviews recent developments in and the fabrication of gas sensors and their attributes for a broad audience, including beginners, graduate students, and specialists in both academic and industrial sectors.

Hybrid Nanomaterials

Download Hybrid Nanomaterials PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1838803378
Total Pages : 150 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Hybrid Nanomaterials by : Rafael Vargas-Bernal

Download or read book Hybrid Nanomaterials written by Rafael Vargas-Bernal and published by BoD – Books on Demand. This book was released on 2020-06-10 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two of the hottest research topics today are hybrid nanomaterials and flexible electronics. As such, this book covers both topics with chapters written by experts from across the globe. Chapters address hybrid nanomaterials, electronic transport in black phosphorus, three-dimensional nanocarbon hybrids, hybrid ion exchangers, pressure-sensitive adhesives for flexible electronics, simulation and modeling of transistors, smart manufacturing technologies, and inorganic semiconductors.

Functional Nanomaterials

Download Functional Nanomaterials PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811548102
Total Pages : 467 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Functional Nanomaterials by : Sabu Thomas

Download or read book Functional Nanomaterials written by Sabu Thomas and published by Springer Nature. This book was released on 2020-06-12 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the current state-of-art in oxide nanostructures, carbon nanostructures and 2D materials fabrication. It covers mimicking of sensing mechanisms and applications in gas sensors. It focuses on gas sensors based on functional nanostructured materials, especially related to issues of sensitivity, selectivity, and temperature dependency for sensors. It covers synthesis, properties, and current gas sensing tools and discusses the necessity for miniaturized sensors. This book will be of use to senior undergraduate and graduate students, professionals, and researchers in the field of solid-state physics, materials science, surface science and chemical engineering.