Linear Mixed Models for Longitudinal Data

Download Linear Mixed Models for Longitudinal Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441903003
Total Pages : 579 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Linear Mixed Models for Longitudinal Data by : Geert Verbeke

Download or read book Linear Mixed Models for Longitudinal Data written by Geert Verbeke and published by Springer Science & Business Media. This book was released on 2009-05-12 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Most analyses were done with the MIXED procedure of the SAS software package, but the data analyses are presented in a software-independent fashion.

Methods and Applications of Longitudinal Data Analysis

Download Methods and Applications of Longitudinal Data Analysis PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128014822
Total Pages : 531 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Methods and Applications of Longitudinal Data Analysis by : Xian Liu

Download or read book Methods and Applications of Longitudinal Data Analysis written by Xian Liu and published by Elsevier. This book was released on 2015-09-01 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.

Mixed Effects Models for Complex Data

Download Mixed Effects Models for Complex Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420074086
Total Pages : 431 pages
Book Rating : 4.0/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu

Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.

Longitudinal Data Analysis

Download Longitudinal Data Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 142001157X
Total Pages : 633 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Longitudinal Data Analysis by : Garrett Fitzmaurice

Download or read book Longitudinal Data Analysis written by Garrett Fitzmaurice and published by CRC Press. This book was released on 2008-08-11 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory

Multivariate Statistical Modelling Based on Generalized Linear Models

Download Multivariate Statistical Modelling Based on Generalized Linear Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1489900101
Total Pages : 440 pages
Book Rating : 4.4/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Statistical Modelling Based on Generalized Linear Models by : Ludwig Fahrmeir

Download or read book Multivariate Statistical Modelling Based on Generalized Linear Models written by Ludwig Fahrmeir and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concerned with the use of generalised linear models for univariate and multivariate regression analysis, this is a detailed introductory survey of the subject, based on the analysis of real data drawn from a variety of subjects such as the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account.

Linear Mixed Models

Download Linear Mixed Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420010433
Total Pages : 376 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Linear Mixed Models by : Brady T. West

Download or read book Linear Mixed Models written by Brady T. West and published by CRC Press. This book was released on 2006-11-22 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav

A Life Course Perspective on Health Trajectories and Transitions

Download A Life Course Perspective on Health Trajectories and Transitions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331920484X
Total Pages : 215 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis A Life Course Perspective on Health Trajectories and Transitions by : Claudine Burton-Jeangros

Download or read book A Life Course Perspective on Health Trajectories and Transitions written by Claudine Burton-Jeangros and published by Springer. This book was released on 2015-08-11 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book examines health trajectories and health transitions at different stages of the life course, including childhood, adulthood and later life. It provides findings that assess the role of biological and social transitions on health status over time. The essays examine a wide range of health issues, including the consequences of military service on body mass index, childhood obesity and cardiovascular health, socio-economic inequalities in preventive health care use, depression and anxiety during the child rearing period, health trajectories and transitions in people with cystic fibrosis and oral health over the life course. The book addresses theoretical, empirical and methodological issues as well as examines different national contexts, which help to identify factors of vulnerability and potential resources that support resilience available for specific groups and/or populations. Health reflects the ability of individuals to adapt to their social environment. This book analyzes health as a dynamic experience. It examines how different aspects of individual health unfold over time as a result of aging but also in relation to changing socioeconomic conditions. It also offers readers potential insights into public policies that affect the health status of a population.

SAS for Mixed Models

Download SAS for Mixed Models PDF Online Free

Author :
Publisher : SAS Institute
ISBN 13 : 163526152X
Total Pages : 823 pages
Book Rating : 4.6/5 (352 download)

DOWNLOAD NOW!


Book Synopsis SAS for Mixed Models by : Walter W. Stroup

Download or read book SAS for Mixed Models written by Walter W. Stroup and published by SAS Institute. This book was released on 2018-12-12 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.

Data Mining With Decision Trees: Theory And Applications (2nd Edition)

Download Data Mining With Decision Trees: Theory And Applications (2nd Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814590096
Total Pages : 328 pages
Book Rating : 4.8/5 (145 download)

DOWNLOAD NOW!


Book Synopsis Data Mining With Decision Trees: Theory And Applications (2nd Edition) by : Oded Z Maimon

Download or read book Data Mining With Decision Trees: Theory And Applications (2nd Edition) written by Oded Z Maimon and published by World Scientific. This book was released on 2014-09-03 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced.This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition.This book invites readers to explore the many benefits in data mining that decision trees offer:

Generalized Linear Mixed Models

Download Generalized Linear Mixed Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439815135
Total Pages : 547 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Generalized Linear Mixed Models by : Walter W. Stroup

Download or read book Generalized Linear Mixed Models written by Walter W. Stroup and published by CRC Press. This book was released on 2016-04-19 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: With numerous examples using SAS PROC GLIMMIX, this text presents an introduction to linear modeling using the generalized linear mixed model as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider.

Hierarchical Linear Models

Download Hierarchical Linear Models PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 9780761919049
Total Pages : 520 pages
Book Rating : 4.9/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Hierarchical Linear Models by : Stephen W. Raudenbush

Download or read book Hierarchical Linear Models written by Stephen W. Raudenbush and published by SAGE. This book was released on 2002 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: New edition of a text in which Raudenbush (U. of Michigan) and Bryk (sociology, U. of Chicago) provide examples, explanations, and illustrations of the theory and use of hierarchical linear models (HLM). New material in Part I (Logic) includes information on multivariate growth models and other topics.

Multivariate Generalized Linear Mixed Models Using R

Download Multivariate Generalized Linear Mixed Models Using R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439813272
Total Pages : 284 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Generalized Linear Mixed Models Using R by : Damon Mark Berridge

Download or read book Multivariate Generalized Linear Mixed Models Using R written by Damon Mark Berridge and published by CRC Press. This book was released on 2011-04-25 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R.A Un

Longitudinal and Panel Data

Download Longitudinal and Panel Data PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521535380
Total Pages : 492 pages
Book Rating : 4.5/5 (353 download)

DOWNLOAD NOW!


Book Synopsis Longitudinal and Panel Data by : Edward W. Frees

Download or read book Longitudinal and Panel Data written by Edward W. Frees and published by Cambridge University Press. This book was released on 2004-08-16 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.

Models for Discrete Longitudinal Data

Download Models for Discrete Longitudinal Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387251448
Total Pages : 720 pages
Book Rating : 4.2/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Models for Discrete Longitudinal Data by : Geert Molenberghs

Download or read book Models for Discrete Longitudinal Data written by Geert Molenberghs and published by Springer Science & Business Media. This book was released on 2006-08-30 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The linear mixed model has become the main parametric tool for the analysis of continuous longitudinal data, as the authors discussed in their 2000 book. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The authors received the American Statistical Association's Excellence in Continuing Education Award based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.

Applied Mixed Model Analysis

Download Applied Mixed Model Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108480578
Total Pages : 249 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Applied Mixed Model Analysis by : Jos W. R. Twisk

Download or read book Applied Mixed Model Analysis written by Jos W. R. Twisk and published by Cambridge University Press. This book was released on 2019-04-18 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing interpretation of results, this hands-on guide explains why, when, and how to use mixed models with your data.

New Developments in Biostatistics and Bioinformatics

Download New Developments in Biostatistics and Bioinformatics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812837434
Total Pages : 295 pages
Book Rating : 4.8/5 (128 download)

DOWNLOAD NOW!


Book Synopsis New Developments in Biostatistics and Bioinformatics by : Jianqing Fan

Download or read book New Developments in Biostatistics and Bioinformatics written by Jianqing Fan and published by World Scientific. This book was released on 2009 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of recent developments in biostatistics and bioinformatics. Written by active researchers in these emerging areas, it is intended to give graduate students and new researchers an idea of where the frontiers of biostatistics and bioinformatics are as well as a forum to learn common techniques in use, so that they can advance the fields via developing new techniques and new results. Extensive references are provided so that researchers can follow the threads to learn more comprehensively what the literature is and to conduct their own research. In particulars, the book covers three important and rapidly advancing topics in biostatistics: analysis of survival and longitudinal data, statistical methods for epidemiology, and bioinformatics.

Nonparametric Regression Methods for Longitudinal Data Analysis

Download Nonparametric Regression Methods for Longitudinal Data Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470009667
Total Pages : 401 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Regression Methods for Longitudinal Data Analysis by : Hulin Wu

Download or read book Nonparametric Regression Methods for Longitudinal Data Analysis written by Hulin Wu and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.