Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Unsupervised Learning Techniques Cluster Analysis Examples With Matlab
Download Unsupervised Learning Techniques Cluster Analysis Examples With Matlab full books in PDF, epub, and Kindle. Read online Unsupervised Learning Techniques Cluster Analysis Examples With Matlab ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis ARTIFICIAL INTELLIGENCE ALGORITHMS FOR UNSUPERVISED LEARNING: CLUSTERING AND PATTERN RECOGNITION WITH NEURAL NETWORKS. Examples with MATLAB by : CESAR PERZ LOPEZ
Download or read book ARTIFICIAL INTELLIGENCE ALGORITHMS FOR UNSUPERVISED LEARNING: CLUSTERING AND PATTERN RECOGNITION WITH NEURAL NETWORKS. Examples with MATLAB written by CESAR PERZ LOPEZ and published by SCIENTIFIC BOOKS. This book was released on with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence combines mathematical algorithms and techniques from Machine Learning, Deep Learning and Big Data to extract the knowledge contained in the data and present it in an understandable and automatic way. Neural networks and their applications are a fundamental tool to develop work in Artificial Intelligence. On the other hand, unsupervised learning is more closely aligned with Artificial Intelligence as it gives the idea that a machine can learn to identify complex processes and patterns without the need for a human to provide guidance and supervision throughout the learning process. Some examples of unsupervised learning algorithms include clustering and association rules. In the case of this type of learning, there is no pre-training data set; the problem is approached blindly and only with logical operations to guide it. Although at first glance it seems impossible, it is about the ability to solve complex problems using only input data and logical algorithms. This avoids the use of reference data. Unsupervised learning algorithms are used to discover hidden patterns in unlabeled data. Unlike supervised learning algorithms, where there is prior knowledge of the desired answers, these algorithms do not have a set of ordered data. They are responsible for determining the most important common characteristics of a group of information and then grouping them according to their similarities. Among the most interesting models are the neural networks. MATLAB implementrs the Deep Learning Toolbox specialized in the techniques of analytics based on neural networks. Throughout this book the techniques of analytics for clustering and classification based on neural networks are developed using MATLAB software
Book Synopsis MATLAB for Machine Learning by : Giuseppe Ciaburro
Download or read book MATLAB for Machine Learning written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2017-08-28 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.
Download or read book Big Data Analytics written by C. Perez and published by CESAR PEREZ. This book was released on 2020-05-31 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. MATLAB has the tool Neural Network Toolbox (Deep Learning Toolbox from version 18) that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control.The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Big Data tools (Parallel Computing Toolbox). Unsupervised learning algorithms, including self-organizing maps and competitive layers-Apps for data-fitting, pattern recognition, and clustering-Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance. his book develops cluster analysis and pattern recognition
Book Synopsis Machine and Deep Learning Using MATLAB by : Kamal I. M. Al-Malah
Download or read book Machine and Deep Learning Using MATLAB written by Kamal I. M. Al-Malah and published by John Wiley & Sons. This book was released on 2023-10-12 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: MACHINE AND DEEP LEARNING In-depth resource covering machine and deep learning methods using MATLAB tools and algorithms, providing insights and algorithmic decision-making processes Machine and Deep Learning Using MATLAB introduces early career professionals to the power of MATLAB to explore machine and deep learning applications by explaining the relevant MATLAB tool or app and how it is used for a given method or a collection of methods. Its properties, in terms of input and output arguments, are explained, the limitations or applicability is indicated via an accompanied text or a table, and a complete running example is shown with all needed MATLAB command prompt code. The text also presents the results, in the form of figures or tables, in parallel with the given MATLAB code, and the MATLAB written code can be later used as a template for trying to solve new cases or datasets. Throughout, the text features worked examples in each chapter for self-study with an accompanying website providing solutions and coding samples. Highlighted notes draw the attention of the user to critical points or issues. Readers will also find information on: Numeric data acquisition and analysis in the form of applying computational algorithms to predict the numeric data patterns (clustering or unsupervised learning) Relationships between predictors and response variable (supervised), categorically sub-divided into classification (discrete response) and regression (continuous response) Image acquisition and analysis in the form of applying one of neural networks, and estimating net accuracy, net loss, and/or RMSE for the successive training, validation, and testing steps Retraining and creation for image labeling, object identification, regression classification, and text recognition Machine and Deep Learning Using MATLAB is a useful and highly comprehensive resource on the subject for professionals, advanced students, and researchers who have some familiarity with MATLAB and are situated in engineering and scientific fields, who wish to gain mastery over the software and its numerous applications.
Book Synopsis Clustering Algorithms by : John A. Hartigan
Download or read book Clustering Algorithms written by John A. Hartigan and published by John Wiley & Sons. This book was released on 1975 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shows how Galileo, Newton, and Einstein tried to explain gravity. Discusses the concept of microgravity and NASA's research on gravity and microgravity.
Book Synopsis Exploratory Data Analysis with MATLAB by : Wendy L. Martinez
Download or read book Exploratory Data Analysis with MATLAB written by Wendy L. Martinez and published by CRC Press. This book was released on 2017-08-07 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data
Book Synopsis MATLAB Programming for Biomedical Engineers and Scientists by : Andrew P. King
Download or read book MATLAB Programming for Biomedical Engineers and Scientists written by Andrew P. King and published by Academic Press. This book was released on 2022-05-24 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATLAB Programming for Biomedical Engineers and Scientists, Second Edition provides an easy-to-learn introduction to the fundamentals of computer programming in MATLAB. The book explains the principles of good programming practice, while also demonstrating how to write efficient and robust code that analyzes and visualizes biomedical data. Aimed at the biomedical engineering student, biomedical scientist and medical researcher with little or no computer programming experience, this is an excellent resource for learning the principles and practice of computer programming using MATLAB. The book enables the reader to analyze problems and apply structured design methods to produce elegant, efficient and well-structured program designs, implement a structured program design in MATLAB, write code that makes good use of MATLAB programming features, including control structures, functions and advanced data types, and much more. - Presents many real-world biomedical problems and data, showing the practical application of programming concepts - Contains two whole chapters dedicated to the practicalities of designing and implementing more complex programs - Provides an accompanying website with freely available data and source code for the practical code examples, activities and exercises in the book - Includes new chapters on machine learning, engineering mathematics, and expanded coverage of data types
Book Synopsis Introduction to Pattern Recognition by : Sergios Theodoridis
Download or read book Introduction to Pattern Recognition written by Sergios Theodoridis and published by Academic Press. This book was released on 2010-03-03 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Pattern Recognition: A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas' Pattern Recognition. It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision. - Matlab code and descriptive summary of the most common methods and algorithms in Theodoridis/Koutroumbas, Pattern Recognition, Fourth Edition - Solved examples in Matlab, including real-life data sets in imaging and audio recognition - Available separately or at a special package price with the main text (ISBN for package: 978-0-12-374491-3)
Book Synopsis Introduction to Intelligent Systems, Control, and Machine Learning using MATLAB by : Marco P. Schoen
Download or read book Introduction to Intelligent Systems, Control, and Machine Learning using MATLAB written by Marco P. Schoen and published by Cambridge University Press. This book was released on 2023-10-31 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dive into intelligent systems, machine learning, and control with this hands-on, project-based textbook, including over 20 hands-on Arduino, Matlab and Simulink assignments. With over 120 end-of-chapter problems, and solutions for instructors, this is the ideal practical introduction for senior and graduate engineering students.
Book Synopsis Place and Health as Complex Systems by : Brian Castellani
Download or read book Place and Health as Complex Systems written by Brian Castellani and published by Springer. This book was released on 2015-02-24 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: The history of public health has focused on direct relationships between problems and solutions: vaccinations against diseases, ad campaigns targeting risky behaviors. But the accelerating pace and mounting intricacies of our lives are challenging the field to find new scientific methods for studying community health. The complexities of place (COP) approach is emerging as one such promising method. Place and Health as Complex Systems demonstrates how COP works, making an empirical case for its use in for designing and implementing interventions. This brief resource reviews the defining characteristics of places as dynamic and evolving social systems, rigorously testing them as well as the COP approach itself. The study, of twenty communities within one county in the Midwest, combines case-based methods and complexity science to determine whether COP improves upon traditional statistical methods of public health research. Its conclusions reveal strengths and limitations of the approach, immediate possibilities for its use, and challenges regarding future research. Included in the coverage: Characteristics of places and the complexities of place approach. The Definitional Test of Complex Systems. Case-based modeling using the SACS toolkit. Methods, maps, and measures used in the study. Places as nodes within larger networks. Places as power-based conflicted negotiations. Place and Health as Complex Systems brings COP into greater prominence in public health research, and is also valuable to researchers in related fields such as demography, health geography, community health, urban planning, and epidemiology.
Book Synopsis Handbook of Discrete and Combinatorial Mathematics by : Kenneth H. Rosen
Download or read book Handbook of Discrete and Combinatorial Mathematics written by Kenneth H. Rosen and published by CRC Press. This book was released on 2017-10-19 with total page 1611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.
Book Synopsis Pattern Recognition in Computational Molecular Biology by : Mourad Elloumi
Download or read book Pattern Recognition in Computational Molecular Biology written by Mourad Elloumi and published by John Wiley & Sons. This book was released on 2015-12-24 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of high-performance pattern recognition techniques and approaches to Computational Molecular Biology This book surveys the developments of techniques and approaches on pattern recognition related to Computational Molecular Biology. Providing a broad coverage of the field, the authors cover fundamental and technical information on these techniques and approaches, as well as discussing their related problems. The text consists of twenty nine chapters, organized into seven parts: Pattern Recognition in Sequences, Pattern Recognition in Secondary Structures, Pattern Recognition in Tertiary Structures, Pattern Recognition in Quaternary Structures, Pattern Recognition in Microarrays, Pattern Recognition in Phylogenetic Trees, and Pattern Recognition in Biological Networks. Surveys the development of techniques and approaches on pattern recognition in biomolecular data Discusses pattern recognition in primary, secondary, tertiary and quaternary structures, as well as microarrays, phylogenetic trees and biological networks Includes case studies and examples to further illustrate the concepts discussed in the book Pattern Recognition in Computational Molecular Biology: Techniques and Approaches is a reference for practitioners and professional researches in Computer Science, Life Science, and Mathematics. This book also serves as a supplementary reading for graduate students and young researches interested in Computational Molecular Biology.
Book Synopsis Sea Ice Image Processing with MATLAB® by : Qin Zhang
Download or read book Sea Ice Image Processing with MATLAB® written by Qin Zhang and published by CRC Press. This book was released on 2018-02-13 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sea Ice Image Processing with MATLAB addresses the topic of image processing for the extraction of key sea ice characteristics from digital photography, which is of great relevance for Artic remote sensing and marine operations. This valuable guide provides tools for quantifying the ice environment that needs to be identified and reproduced for such testing. This includes fit-for-purpose studies of existing vessels, new-build conceptual design and detailed engineering design studies for new developments, and studies of demanding marine operations involving multiple vessels and operational scenarios in sea ice. A major contribution of this work is the development of automated computer algorithms for efficient image analysis. These are used to process individual sea-ice images and video streams of images to extract parameters such as ice floe size distribution, and ice types. Readers are supplied with Matlab source codes of the algorithms for the image processing methods discussed in the book made available as online material. Features Presents the first systematic work using image processing techniques to identify ice floe size distribution from aerial images Helps identify individual ice floe and obtain floe size distributions for Arctic offshore operations and transportation Explains specific algorithms that can be combined to solve various problems during polar sea ice investigations Includes MATLAB® codes useful not only for academics, but for ice engineers and scientists to develop tools applicable in different areas such as sustainable arctic marine and coastal technology research Provides image processing techniques applicable to other fields like biomedicine, material science, etc
Book Synopsis Computational Neuroscience by : Vinícius Rosa Cota
Download or read book Computational Neuroscience written by Vinícius Rosa Cota and published by Springer Nature. This book was released on 2019-11-28 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed proceedings of the Second International Workshop of Computational Neuroscience, held in São João Del-Rei, Brazil, in September 2019. The 17 full papers and 3 short papers presented have been thoroughly reviewed and selected from 45 submissions. The papers are organized in topical sections: artificial intelligence, machine learning, and related topics; complex systems and complex networks; computational neuroscience of learning and memory; neural signal processing; software and hardware implementations in neuroscience; brain-machine interfaces and neurostimulation; and seizure prediction.
Book Synopsis Computational Statistics Handbook with MATLAB by : Wendy L. Martinez
Download or read book Computational Statistics Handbook with MATLAB written by Wendy L. Martinez and published by CRC Press. This book was released on 2015-12-16 with total page 751 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Strong Practical Focus on Applications and AlgorithmsComputational Statistics Handbook with MATLAB, Third Edition covers today's most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the i
Book Synopsis Computational and Statistical Methods for Analysing Big Data with Applications by : Shen Liu
Download or read book Computational and Statistical Methods for Analysing Big Data with Applications written by Shen Liu and published by Academic Press. This book was released on 2015-11-20 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Book Synopsis Computational Learning Approaches to Data Analytics in Biomedical Applications by : Khalid Al-Jabery
Download or read book Computational Learning Approaches to Data Analytics in Biomedical Applications written by Khalid Al-Jabery and published by Academic Press. This book was released on 2019-11-20 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. - Includes an overview of data analytics in biomedical applications and current challenges - Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices - Provides complete coverage of computational and statistical analysis tools for biomedical data analysis - Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor