Understanding Large Language Models: A Guide to Transformer Architectures and NLP Applications

Download Understanding Large Language Models: A Guide to Transformer Architectures and NLP Applications PDF Online Free

Author :
Publisher : Anand Vemula
ISBN 13 :
Total Pages : 35 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Understanding Large Language Models: A Guide to Transformer Architectures and NLP Applications by : Anand Vemula

Download or read book Understanding Large Language Models: A Guide to Transformer Architectures and NLP Applications written by Anand Vemula and published by Anand Vemula. This book was released on with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the ever-evolving world of language processing, "Understanding Large Language Models" offers a comprehensive guidebook. It delves into the inner workings of both Large Language Models (LLMs) and the revolutionary Transformer architectures that power them. The book begins by establishing the foundation. Part 1 introduces Natural Language Processing (NLP) and the challenges it tackles. It then unveils LLMs, exploring their capabilities and the impact they have on various industries. Ethical considerations and limitations of these powerful tools are also addressed. Part 2 equips you with the necessary background. It dives into the essentials of Deep Learning for NLP, explaining Recurrent Neural Networks (RNNs) and their shortcomings. Traditional NLP techniques like word embeddings and language modeling are also explored, providing context for the advancements brought by transformers. Part 3 marks the turning point. Here, the book unveils the Transformer architecture, the engine driving LLMs. You'll grasp its core principles, including the encoder-decoder structure and the critical concept of attention, which allows the model to understand relationships within text. The chapter delves into the benefits transformers offer, such as speed, accuracy, and their ability to capture long-range dependencies in language. Part 4 bridges the gap between theory and practice. It explores the data preparation process for training LLMs and the challenges associated with handling massive datasets. Optimization techniques for efficient learning are explained, along with the concept of fine-tuning pre-trained LLMs for specific applications. Finally, Part 5 showcases the power of LLMs in action. It explores a range of applications, from creative text generation and machine translation to text summarization and question answering. The book concludes by looking towards the future, discussing potential societal impacts, addressing ethical considerations, and exploring advancements in transformer architectures that will continue to shape the landscape of NLP. This book is your key to unlocking the world of LLMs and Transformers. Whether you're a student, developer, or simply curious about the future of language technology, this guide provides a clear and engaging roadmap to understanding these groundbreaking advancements.

Natural Language Processing with Transformers, Revised Edition

Download Natural Language Processing with Transformers, Revised Edition PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098136764
Total Pages : 409 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Transformers, Revised Edition by : Lewis Tunstall

Download or read book Natural Language Processing with Transformers, Revised Edition written by Lewis Tunstall and published by "O'Reilly Media, Inc.". This book was released on 2022-05-26 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments

Transformers for Natural Language Processing

Download Transformers for Natural Language Processing PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800568630
Total Pages : 385 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Transformers for Natural Language Processing by : Denis Rothman

Download or read book Transformers for Natural Language Processing written by Denis Rothman and published by Packt Publishing Ltd. This book was released on 2021-01-29 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher's Note: A new edition of this book is out now that includes working with GPT-3 and comparing the results with other models. It includes even more use cases, such as casual language analysis and computer vision tasks, as well as an introduction to OpenAI's Codex. Key FeaturesBuild and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning modelsGo through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machineTest transformer models on advanced use casesBook Description The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What you will learnUse the latest pretrained transformer modelsGrasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer modelsCreate language understanding Python programs using concepts that outperform classical deep learning modelsUse a variety of NLP platforms, including Hugging Face, Trax, and AllenNLPApply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and moreMeasure the productivity of key transformers to define their scope, potential, and limits in productionWho this book is for Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data.

Mastering Transformers

Download Mastering Transformers PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801078890
Total Pages : 374 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Mastering Transformers by : Savaş Yıldırım

Download or read book Mastering Transformers written by Savaş Yıldırım and published by Packt Publishing Ltd. This book was released on 2021-09-15 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take a problem-solving approach to learning all about transformers and get up and running in no time by implementing methodologies that will build the future of NLP Key Features Explore quick prototyping with up-to-date Python libraries to create effective solutions to industrial problems Solve advanced NLP problems such as named-entity recognition, information extraction, language generation, and conversational AI Monitor your model's performance with the help of BertViz, exBERT, and TensorBoard Book DescriptionTransformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library. The book gives you an introduction to Transformers by showing you how to write your first hello-world program. You'll then learn how a tokenizer works and how to train your own tokenizer. As you advance, you'll explore the architecture of autoencoding models, such as BERT, and autoregressive models, such as GPT. You'll see how to train and fine-tune models for a variety of natural language understanding (NLU) and natural language generation (NLG) problems, including text classification, token classification, and text representation. This book also helps you to learn efficient models for challenging problems, such as long-context NLP tasks with limited computational capacity. You'll also work with multilingual and cross-lingual problems, optimize models by monitoring their performance, and discover how to deconstruct these models for interpretability and explainability. Finally, you'll be able to deploy your transformer models in a production environment. By the end of this NLP book, you'll have learned how to use Transformers to solve advanced NLP problems using advanced models.What you will learn Explore state-of-the-art NLP solutions with the Transformers library Train a language model in any language with any transformer architecture Fine-tune a pre-trained language model to perform several downstream tasks Select the right framework for the training, evaluation, and production of an end-to-end solution Get hands-on experience in using TensorBoard and Weights & Biases Visualize the internal representation of transformer models for interpretability Who this book is for This book is for deep learning researchers, hands-on NLP practitioners, as well as ML/NLP educators and students who want to start their journey with Transformers. Beginner-level machine learning knowledge and a good command of Python will help you get the best out of this book.

Transfer Learning for Natural Language Processing

Download Transfer Learning for Natural Language Processing PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 163835099X
Total Pages : 262 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Transfer Learning for Natural Language Processing by : Paul Azunre

Download or read book Transfer Learning for Natural Language Processing written by Paul Azunre and published by Simon and Schuster. This book was released on 2021-08-31 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build custom NLP models in record time by adapting pre-trained machine learning models to solve specialized problems. Summary In Transfer Learning for Natural Language Processing you will learn: Fine tuning pretrained models with new domain data Picking the right model to reduce resource usage Transfer learning for neural network architectures Generating text with generative pretrained transformers Cross-lingual transfer learning with BERT Foundations for exploring NLP academic literature Training deep learning NLP models from scratch is costly, time-consuming, and requires massive amounts of data. In Transfer Learning for Natural Language Processing, DARPA researcher Paul Azunre reveals cutting-edge transfer learning techniques that apply customizable pretrained models to your own NLP architectures. You’ll learn how to use transfer learning to deliver state-of-the-art results for language comprehension, even when working with limited label data. Best of all, you’ll save on training time and computational costs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build custom NLP models in record time, even with limited datasets! Transfer learning is a machine learning technique for adapting pretrained machine learning models to solve specialized problems. This powerful approach has revolutionized natural language processing, driving improvements in machine translation, business analytics, and natural language generation. About the book Transfer Learning for Natural Language Processing teaches you to create powerful NLP solutions quickly by building on existing pretrained models. This instantly useful book provides crystal-clear explanations of the concepts you need to grok transfer learning along with hands-on examples so you can practice your new skills immediately. As you go, you’ll apply state-of-the-art transfer learning methods to create a spam email classifier, a fact checker, and more real-world applications. What's inside Fine tuning pretrained models with new domain data Picking the right model to reduce resource use Transfer learning for neural network architectures Generating text with pretrained transformers About the reader For machine learning engineers and data scientists with some experience in NLP. About the author Paul Azunre holds a PhD in Computer Science from MIT and has served as a Principal Investigator on several DARPA research programs. Table of Contents PART 1 INTRODUCTION AND OVERVIEW 1 What is transfer learning? 2 Getting started with baselines: Data preprocessing 3 Getting started with baselines: Benchmarking and optimization PART 2 SHALLOW TRANSFER LEARNING AND DEEP TRANSFER LEARNING WITH RECURRENT NEURAL NETWORKS (RNNS) 4 Shallow transfer learning for NLP 5 Preprocessing data for recurrent neural network deep transfer learning experiments 6 Deep transfer learning for NLP with recurrent neural networks PART 3 DEEP TRANSFER LEARNING WITH TRANSFORMERS AND ADAPTATION STRATEGIES 7 Deep transfer learning for NLP with the transformer and GPT 8 Deep transfer learning for NLP with BERT and multilingual BERT 9 ULMFiT and knowledge distillation adaptation strategies 10 ALBERT, adapters, and multitask adaptation strategies 11 Conclusions

Learning Deep Learning

Download Learning Deep Learning PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0137470290
Total Pages : 1106 pages
Book Rating : 4.1/5 (374 download)

DOWNLOAD NOW!


Book Synopsis Learning Deep Learning by : Magnus Ekman

Download or read book Learning Deep Learning written by Magnus Ekman and published by Addison-Wesley Professional. This book was released on 2021-07-19 with total page 1106 pages. Available in PDF, EPUB and Kindle. Book excerpt: NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Quick Start Guide to Large Language Models

Download Quick Start Guide to Large Language Models PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0138199337
Total Pages : 429 pages
Book Rating : 4.1/5 (381 download)

DOWNLOAD NOW!


Book Synopsis Quick Start Guide to Large Language Models by : Sinan Ozdemir

Download or read book Quick Start Guide to Large Language Models written by Sinan Ozdemir and published by Addison-Wesley Professional. This book was released on 2023-09-20 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems. Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, hands-on exercises, and more. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, parameters, and performance. You'll find even more resources on the companion website, including sample datasets and code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and ChatGPT), Google (BERT, T5, and Bard), EleutherAI (GPT-J and GPT-Neo), Cohere (the Command family), and Meta (BART and the LLaMA family). Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more Use APIs and Python to fine-tune and customize LLMs for your requirements Build a complete neural/semantic information retrieval system and attach to conversational LLMs for retrieval-augmented generation Master advanced prompt engineering techniques like output structuring, chain-ofthought, and semantic few-shot prompting Customize LLM embeddings to build a complete recommendation engine from scratch with user data Construct and fine-tune multimodal Transformer architectures using opensource LLMs Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF) Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind "By balancing the potential of both open- and closed-source models, Quick Start Guide to Large Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the gap between theoretical concepts and practical application." --Giada Pistilli, Principal Ethicist at HuggingFace "A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field." --Pete Huang, author of The Neuron Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Speech & Language Processing

Download Speech & Language Processing PDF Online Free

Author :
Publisher : Pearson Education India
ISBN 13 : 9788131716724
Total Pages : 912 pages
Book Rating : 4.7/5 (167 download)

DOWNLOAD NOW!


Book Synopsis Speech & Language Processing by : Dan Jurafsky

Download or read book Speech & Language Processing written by Dan Jurafsky and published by Pearson Education India. This book was released on 2000-09 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Decoding Large Language Models

Download Decoding Large Language Models PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1835081800
Total Pages : 396 pages
Book Rating : 4.8/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Decoding Large Language Models by : Irena Cronin

Download or read book Decoding Large Language Models written by Irena Cronin and published by Packt Publishing Ltd. This book was released on 2024-10-31 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the architecture, development, and deployment strategies of large language models to unlock their full potential Key Features Gain in-depth insight into LLMs, from architecture through to deployment Learn through practical insights into real-world case studies and optimization techniques Get a detailed overview of the AI landscape to tackle a wide variety of AI and NLP challenges Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionEver wondered how large language models (LLMs) work and how they're shaping the future of artificial intelligence? Written by a renowned author and AI, AR, and data expert, Decoding Large Language Models is a combination of deep technical insights and practical use cases that not only demystifies complex AI concepts, but also guides you through the implementation and optimization of LLMs for real-world applications. You’ll learn about the structure of LLMs, how they're developed, and how to utilize them in various ways. The chapters will help you explore strategies for improving these models and testing them to ensure effective deployment. Packed with real-life examples, this book covers ethical considerations, offering a balanced perspective on their societal impact. You’ll be able to leverage and fine-tune LLMs for optimal performance with the help of detailed explanations. You’ll also master techniques for training, deploying, and scaling models to be able to overcome complex data challenges with confidence and precision. This book will prepare you for future challenges in the ever-evolving fields of AI and NLP. By the end of this book, you’ll have gained a solid understanding of the architecture, development, applications, and ethical use of LLMs and be up to date with emerging trends, such as GPT-5.What you will learn Explore the architecture and components of contemporary LLMs Examine how LLMs reach decisions and navigate their decision-making process Implement and oversee LLMs effectively within your organization Master dataset preparation and the training process for LLMs Hone your skills in fine-tuning LLMs for targeted NLP tasks Formulate strategies for the thorough testing and evaluation of LLMs Discover the challenges associated with deploying LLMs in production environments Develop effective strategies for integrating LLMs into existing systems Who this book is for If you’re a technical leader working in NLP, an AI researcher, or a software developer interested in building AI-powered applications, this book is for you. To get the most out of this book, you should have a foundational understanding of machine learning principles; proficiency in a programming language such as Python; knowledge of algebra and statistics; and familiarity with natural language processing basics.

Practical Natural Language Processing

Download Practical Natural Language Processing PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 149205402X
Total Pages : 455 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Natural Language Processing by : Sowmya Vajjala

Download or read book Practical Natural Language Processing written by Sowmya Vajjala and published by O'Reilly Media. This book was released on 2020-06-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective

Large Language Models

Download Large Language Models PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031656474
Total Pages : 496 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Large Language Models by : Uday Kamath

Download or read book Large Language Models written by Uday Kamath and published by Springer Nature. This book was released on 2024 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs -- their intricate architecture, underlying algorithms, and ethical considerations -- require thorough exploration, creating a need for a comprehensive book on this subject. This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios. Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models. This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.

Natural Language Processing in Biomedicine

Download Natural Language Processing in Biomedicine PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031558650
Total Pages : 449 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing in Biomedicine by : Hua Xu

Download or read book Natural Language Processing in Biomedicine written by Hua Xu and published by Springer Nature. This book was released on with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mastering LLM Applications with LangChain and Hugging Face

Download Mastering LLM Applications with LangChain and Hugging Face PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9365891043
Total Pages : 306 pages
Book Rating : 4.3/5 (658 download)

DOWNLOAD NOW!


Book Synopsis Mastering LLM Applications with LangChain and Hugging Face by : Hunaidkhan Pathan

Download or read book Mastering LLM Applications with LangChain and Hugging Face written by Hunaidkhan Pathan and published by BPB Publications. This book was released on 2024-09-21 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: DESCRIPTION The book is all about the basics of NLP, generative AI, and their specific component LLM. In this book, we have provided conceptual knowledge about different terminologies and concepts of NLP and NLG with practical hands-on. This comprehensive book offers a deep dive into the world of NLP and LLMs. Starting with the fundamentals of Python programming and code editors, the book gradually introduces NLP concepts, including text preprocessing, word embeddings, and transformer architectures. You will explore the architecture and capabilities of popular models like GPT-3 and BERT. The book also covers practical aspects of LLM usage for RAG applications using frameworks like LangChain and Hugging Face and deploying them in real world applications. With a focus on both theoretical knowledge and hands-on experience, this book is ideal for anyone looking to master the art of NLP and LLMs. The book also contains AWS Cloud deployment, which will help readers step into the world of cloud computing. As the book contains both theoretical and practical approaches, it will help the readers to gain confidence in the deployment of LLMs for any use cases, as well as get acquainted with the required generative AI knowledge to crack the interviews. KEY FEATURES ● Covers Python basics, NLP concepts, and terminologies, including LLM and RAG concepts. ● Provides exposure to LangChain, Hugging Face ecosystem, and chatbot creation using custom data. ● Guides on integrating chatbots with real-time applications and deploying them on AWS Cloud. WHAT YOU WILL LEARN ● Basics of Python, which contains Python concepts, installation, and code editors. ● Foundation of NLP and generative AI concepts and different terminologies being used in NLP and generative AI domain. ● LLMs and their importance in the cutting edge of AI. ● Creating chatbots using custom data using open source LLMs without spending a single penny. ● Integration of chatbots with real-world applications like Telegram. WHO THIS BOOK IS FOR This book is ideal for beginners and freshers entering the AI or ML field, as well as those at an intermediate level looking to deepen their understanding of generative AI, LLMs, and cloud deployment. TABLE OF CONTENTS 1. Introduction to Python and Code Editors 2. Installation of Python, Required Packages, and Code Editors 3. Ways to Run Python Scripts 4. Introduction to NLP and its Concepts 5. Introduction to Large Language Models 6. Introduction of LangChain, Usage and Importance 7. Introduction of Hugging Face, its Usage and Importance 8. Creating Chatbots Using Custom Data with LangChain and Hugging Face Hub 9. Hyperparameter Tuning and Fine Tuning Pre-Trained Models 10. Integrating LLMs into Real-World Applications–Case Studies 11. Deploying LLMs in Cloud Environments for Scalability 12. Future Directions: Advances in LLMs and Beyond Appendix A: Useful Tips for Efficient LLM Experimentation Appendix B: Resources and References

Getting Started with Google BERT

Download Getting Started with Google BERT PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838826238
Total Pages : 340 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Getting Started with Google BERT by : Sudharsan Ravichandiran

Download or read book Getting Started with Google BERT written by Sudharsan Ravichandiran and published by Packt Publishing Ltd. This book was released on 2021-01-22 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kickstart your NLP journey by exploring BERT and its variants such as ALBERT, RoBERTa, DistilBERT, VideoBERT, and more with Hugging Face's transformers library Key FeaturesExplore the encoder and decoder of the transformer modelBecome well-versed with BERT along with ALBERT, RoBERTa, and DistilBERTDiscover how to pre-train and fine-tune BERT models for several NLP tasksBook Description BERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer’s encoder and decoder work. You’ll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you’ll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you’ll be well-versed with using BERT and its variants for performing practical NLP tasks. What you will learnUnderstand the transformer model from the ground upFind out how BERT works and pre-train it using masked language model (MLM) and next sentence prediction (NSP) tasksGet hands-on with BERT by learning to generate contextual word and sentence embeddingsFine-tune BERT for downstream tasksGet to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT modelsGet the hang of the BERT models based on knowledge distillationUnderstand cross-lingual models such as XLM and XLM-RExplore Sentence-BERT, VideoBERT, and BARTWho this book is for This book is for NLP professionals and data scientists looking to simplify NLP tasks to enable efficient language understanding using BERT. A basic understanding of NLP concepts and deep learning is required to get the best out of this book.

Introduction to Text Analytics

Download Introduction to Text Analytics PDF Online Free

Author :
Publisher : SAGE Publications Limited
ISBN 13 : 1529677580
Total Pages : 270 pages
Book Rating : 4.5/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Text Analytics by : Emily Ohman

Download or read book Introduction to Text Analytics written by Emily Ohman and published by SAGE Publications Limited. This book was released on 2024-11-01 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-follow book will revolutionise how you approach text mining and data analysis as well as equipping you with the tools, and confidence, to navigate complex qualitative data. It can be challenging to effectively combine theoretical concepts with practical, real-world applications but this accessible guide provides you with a clear step-by-step approach. Written specifically for students and early career researchers this pragmatic manual will: • Contextualise your learning with real-world data and engaging case studies. • Encourage the application of your new skills with reflective questions. • Enhance your ability to be critical, and reflective, when dealing with imperfect data. Supported by practical online resources, this book is the perfect companion for those looking to gain confidence and independence whilst using transferable data skills.

Mastering Transformers

Download Mastering Transformers PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1837631506
Total Pages : 462 pages
Book Rating : 4.8/5 (376 download)

DOWNLOAD NOW!


Book Synopsis Mastering Transformers by : Savaş Yıldırım

Download or read book Mastering Transformers written by Savaş Yıldırım and published by Packt Publishing Ltd. This book was released on 2024-06-03 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore transformer-based language models from BERT to GPT, delving into NLP and computer vision tasks, while tackling challenges effectively Key Features Understand the complexity of deep learning architecture and transformers architecture Create solutions to industrial natural language processing (NLP) and computer vision (CV) problems Explore challenges in the preparation process, such as problem and language-specific dataset transformation Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionTransformer-based language models such as BERT, T5, GPT, DALL-E, and ChatGPT have dominated NLP studies and become a new paradigm. Thanks to their accurate and fast fine-tuning capabilities, transformer-based language models have been able to outperform traditional machine learning-based approaches for many challenging natural language understanding (NLU) problems. Aside from NLP, a fast-growing area in multimodal learning and generative AI has recently been established, showing promising results. Mastering Transformers will help you understand and implement multimodal solutions, including text-to-image. Computer vision solutions that are based on transformers are also explained in the book. You’ll get started by understanding various transformer models before learning how to train different autoregressive language models such as GPT and XLNet. The book will also get you up to speed with boosting model performance, as well as tracking model training using the TensorBoard toolkit. In the later chapters, you’ll focus on using vision transformers to solve computer vision problems. Finally, you’ll discover how to harness the power of transformers to model time series data and for predicting. By the end of this transformers book, you’ll have an understanding of transformer models and how to use them to solve challenges in NLP and CV.What you will learn Focus on solving simple-to-complex NLP problems with Python Discover how to solve classification/regression problems with traditional NLP approaches Train a language model and explore how to fine-tune models to the downstream tasks Understand how to use transformers for generative AI and computer vision tasks Build transformer-based NLP apps with the Python transformers library Focus on language generation such as machine translation and conversational AI in any language Speed up transformer model inference to reduce latency Who this book is for This book is for deep learning researchers, hands-on practitioners, and ML/NLP researchers. Educators, as well as students who have a good command of programming subjects, knowledge in the field of machine learning and artificial intelligence, and who want to develop apps in the field of NLP as well as multimodal tasks will also benefit from this book’s hands-on approach. Knowledge of Python (or any programming language) and machine learning literature, as well as a basic understanding of computer science, are required.

The Generative AI Practitioner’s Guide

Download The Generative AI Practitioner’s Guide PDF Online Free

Author :
Publisher : TinyTechMedia LLC
ISBN 13 :
Total Pages : 103 pages
Book Rating : 4.9/5 (911 download)

DOWNLOAD NOW!


Book Synopsis The Generative AI Practitioner’s Guide by : Arup Das

Download or read book The Generative AI Practitioner’s Guide written by Arup Das and published by TinyTechMedia LLC. This book was released on 2024-07-20 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative AI is revolutionizing the way organizations leverage technology to gain a competitive edge. However, as more companies experiment with and adopt AI systems, it becomes challenging for data and analytics professionals, AI practitioners, executives, technologists, and business leaders to look beyond the buzz and focus on the essential questions: Where should we begin? How do we initiate the process? What potential pitfalls should we be aware of? This TinyTechGuide offers valuable insights and practical recommendations on constructing a business case, calculating ROI, exploring real-life applications, and considering ethical implications. Crucially, it introduces five LLM patterns—author, retriever, extractor, agent, and experimental—to effectively implement GenAI systems within an organization. The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications bridges critical knowledge gaps for business leaders and practitioners, equipping them with a comprehensive toolkit to define a business case and successfully deploy GenAI. In today’s rapidly evolving world, staying ahead of the competition requires a deep understanding of these five implementation patterns and the potential benefits and risks associated with GenAI. Designed for business leaders, tech experts, and IT teams, this book provides real-life examples and actionable insights into GenAI’s transformative impact on various industries. Empower your organization with a competitive edge in today’s marketplace using The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications. Remember, it’s not the tech that’s tiny, just the book!™