Proceedings of 7th ASRES International Conference on Intelligent Technologies

Download Proceedings of 7th ASRES International Conference on Intelligent Technologies PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819919126
Total Pages : 363 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of 7th ASRES International Conference on Intelligent Technologies by : Karm Veer Arya

Download or read book Proceedings of 7th ASRES International Conference on Intelligent Technologies written by Karm Veer Arya and published by Springer Nature. This book was released on 2023-07-05 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of the 7th International Conference on Intelligent Technologies (ICIT 2022) held on December 16-18, 2022, at the University of Pembangunan Jaya, Jakarta, Indonesia. The respective contributions from industrial practitioners and researchers present advanced studies related to application of intelligent technologies in various fields of research industry and society. This includes applications in variety of fields such as computational intelligence, data science and engineering, communication and networking, signal and image processing, electrical devices, circuits systems, robotics, instrumentation, automation, biomedical, and health care.

Modular Learning in Neural Networks

Download Modular Learning in Neural Networks PDF Online Free

Author :
Publisher : Wiley-Interscience
ISBN 13 :
Total Pages : 264 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Modular Learning in Neural Networks by : Tomas Hrycej

Download or read book Modular Learning in Neural Networks written by Tomas Hrycej and published by Wiley-Interscience. This book was released on 1992-10-09 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Modular Learning in Neural Networks covers the full range of conceivable approaches to the modularization of learning, including decomposition of learning into modules using supervised and unsupervised learning types; decomposition of the function to be mapped into linear and nonlinear parts; decomposition of the neural network to minimize harmful interferences between a large number of network parameters during learning; decomposition of the application task into subtasks that are learned separately; decomposition into a knowledge-based part and a learning part. The book attempts to show that modular learning based on these approaches is helpful in improving the learning performance of neural networks. It demonstrates this by applying modular methods to a pair of benchmark cases - a medical classification problem of realistic size, encompassing 7,200 cases of thyroid disorder; and a handwritten digits classification problem, involving several thousand cases. In so doing, the book shows that some of the proposed methods lead to substantial improvements in solution quality and learning speed, as well as enhanced robustness with regard to learning control parameters.".

The 1997 IEEE International Conference on Neural Networks, June 9-12, 1997, Westin Galleria Hotel, Houston, Texas, USA.

Download The 1997 IEEE International Conference on Neural Networks, June 9-12, 1997, Westin Galleria Hotel, Houston, Texas, USA. PDF Online Free

Author :
Publisher : Institute of Electrical & Electronics Engineers(IEEE)
ISBN 13 :
Total Pages : 684 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis The 1997 IEEE International Conference on Neural Networks, June 9-12, 1997, Westin Galleria Hotel, Houston, Texas, USA. by : IEEE Neural Networks Council

Download or read book The 1997 IEEE International Conference on Neural Networks, June 9-12, 1997, Westin Galleria Hotel, Houston, Texas, USA. written by IEEE Neural Networks Council and published by Institute of Electrical & Electronics Engineers(IEEE). This book was released on 1997 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instrumentation thrusts and achievements are reported in the field of simulation of aerospace dynamics. Quantified mapping techniques and measurements in research in unsteady fluid mechanics phenomena are described and the frontiers of speed and flight simulation are extended."

Ultimate Neural Network Programming with Python

Download Ultimate Neural Network Programming with Python PDF Online Free

Author :
Publisher : Orange Education Pvt Ltd
ISBN 13 : 9391246540
Total Pages : 366 pages
Book Rating : 4.3/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Ultimate Neural Network Programming with Python by : Vishal Rajput

Download or read book Ultimate Neural Network Programming with Python written by Vishal Rajput and published by Orange Education Pvt Ltd. This book was released on 2023-11-04 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Neural Networks for Building Modern AI Systems. KEY FEATURES ● Comprehensive Coverage of Foundational AI Concepts and Theories. ● In-Depth Exploration of Maths Behind Neural Network Mathematics. ● Effective Strategies for Structuring Deep Learning Code. ● Real-World Applications of AI Principles and Techniques. DESCRIPTION This book is a practical guide to the world of Artificial Intelligence (AI), unraveling the math and principles behind applications like Google Maps and Amazon. The book starts with an introduction to Python and AI, demystifies complex AI math, teaches you to implement AI concepts, and explores high-level AI libraries. Throughout the chapters, readers are engaged with the book through practice exercises, and supplementary learnings. The book then gradually moves to Neural Networks with Python before diving into constructing ANN models and real-world AI applications. It accommodates various learning styles, letting readers focus on hands-on implementation or mathematical understanding. This book isn't just about using AI tools; it's a compass in the world of AI resources, empowering readers to modify and create tools for complex AI systems. It ensures a journey of exploration, experimentation, and proficiency in AI, equipping readers with the skills needed to excel in the AI industry. WHAT WILL YOU LEARN ● Leverage TensorFlow and Keras while building the foundation for creating AI pipelines. ● Explore advanced AI concepts, including dimensionality reduction, unsupervised learning, and optimization techniques. ● Master the intricacies of neural network construction from the ground up. ● Dive deeper into neural network development, covering derivatives, backpropagation, and optimization strategies. ● Harness the power of high-level AI libraries to develop production-ready code, allowing you to accelerate the development of AI applications. ● Stay up-to-date with the latest breakthroughs and advancements in the dynamic field of artificial intelligence. WHO IS THIS BOOK FOR? This book serves as an ideal guide for software engineers eager to explore AI, offering a detailed exploration and practical application of AI concepts using Python. AI researchers will find this book enlightening, providing clear insights into the mathematical concepts underlying AI algorithms and aiding in writing production-level code. This book is designed to enhance your skills and knowledge to create sophisticated, AI-powered solutions and advance in the multifaceted field of AI. TABLE OF CONTENTS 1. Understanding AI History 2. Setting up Python Workflow for AI Development 3. Python Libraries for Data Scientists 4. Foundational Concepts for Effective Neural Network Training 5. Dimensionality Reduction, Unsupervised Learning and Optimizations 6. Building Deep Neural Networks from Scratch 7. Derivatives, Backpropagation, and Optimizers 8. Understanding Convolution and CNN Architectures 9. Understanding the Basics of TensorFlow and Keras 10. Building End-to-end Image Segmentation Pipeline 11. Latest Advancements in AI Index

Large Language Models

Download Large Language Models PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031656474
Total Pages : 496 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Large Language Models by : Uday Kamath

Download or read book Large Language Models written by Uday Kamath and published by Springer Nature. This book was released on 2024 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs -- their intricate architecture, underlying algorithms, and ethical considerations -- require thorough exploration, creating a need for a comprehensive book on this subject. This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios. Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models. This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.

Pythonic AI

Download Pythonic AI PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 935551591X
Total Pages : 554 pages
Book Rating : 4.3/5 (555 download)

DOWNLOAD NOW!


Book Synopsis Pythonic AI by : Arindam Banerjee

Download or read book Pythonic AI written by Arindam Banerjee and published by BPB Publications. This book was released on 2023-10-31 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the power of AI with Python: Your Journey from Novice to Neural Nets KEY FEATURES ● Learn to code in Python and use Google Colab's hardware accelerators (GPU and TPU) to train and deploy AI models efficiently. ● Develop Convolutional Neural Networks (CNNs) using the TensorFlow 2 library for computer vision tasks. ● Develop sequence, attention-based, and Transformer models using the TensorFlow 2 library for Natural Language Processing (NLP) tasks. DESCRIPTION “Pythonic AI” is a book that teaches you how to build AI models using Python. It also includes practical projects in different domains so you can see how AI is used in the real world. Besides teaching how to build AI models, the book also teaches how to understand and explore the opportunities that AI presents. It includes several hands-on projects that walk you through successful AI applications, explaining concepts like neural networks, computer vision, natural language processing (NLP), and generative models. Each project in the book also reiterates and reinforces the important aspects of Python scripting. You'll learn Python coding and how it can be used to build cutting-edge AI applications. The author explains each essential line of Python code in detail, taking into account the importance and difficulty of understanding. By the end of the book, you will learn how to develop a portfolio of AI projects that will help you land your dream job in AI. WHAT YOU WILL LEARN ● Create neural network models using the TensorFlow 2 library. ● Develop Convolutional Neural Networks (CNNs) for computer vision tasks. ● Develop Sequence models for Natural Language Processing (NLP) tasks. ● Create Attention-based and Transformer models. ● Learn how to create Generative Adversarial Networks (GANs). WHO THIS BOOK IS FOR This book is for everyone who wants to learn how to build AI applications in Python, regardless of their experience level. Whether you're a student, a tech professional, a non-techie, or a technology enthusiast, this book will teach you the fundamentals of Python and AI, and show you how to apply them to real-world problems. TABLE OF CONTENTS 1. Python Kickstart: Concepts, Libraries, and Coding 2. Setting up AI Lab 3. Design My First Neural Network Model 4. Explore Designing CNN with TensorFlow 5. Develop CNN-based Image Classifier Apps 6. Train and Deploy Object Detection Models 7. Create a Text and Image Reader 8. Explore NLP for Advanced Text Analysis 9. Up and Running with Sequence Models 10. Using Sequence Models for Automated Text Classification 11. Create Attention and Transformer Models 12. Generating Captions for Images 13. Learn to Build GAN Models 14. Generate Artificial Faces Using GAN

Proceedings of the Twenty-first Annual Conference of the Cognitive Science Society

Download Proceedings of the Twenty-first Annual Conference of the Cognitive Science Society PDF Online Free

Author :
Publisher : Psychology Press
ISBN 13 : 1135658374
Total Pages : 847 pages
Book Rating : 4.1/5 (356 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the Twenty-first Annual Conference of the Cognitive Science Society by : Martin Hahn

Download or read book Proceedings of the Twenty-first Annual Conference of the Cognitive Science Society written by Martin Hahn and published by Psychology Press. This book was released on 2020-12-22 with total page 847 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the complete collection of peer-reviewed presentations at the 1999 Cognitive Science Society meeting, including papers, poster abstracts, and descriptions of conference symposia. For students and researchers in all areas of cognitive science.

Supervised Machine Learning for Text Analysis in R

Download Supervised Machine Learning for Text Analysis in R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000461971
Total Pages : 402 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Supervised Machine Learning for Text Analysis in R by : Emil Hvitfeldt

Download or read book Supervised Machine Learning for Text Analysis in R written by Emil Hvitfeldt and published by CRC Press. This book was released on 2021-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

Learn OpenAI Whisper

Download Learn OpenAI Whisper PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1835087493
Total Pages : 372 pages
Book Rating : 4.8/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Learn OpenAI Whisper by : Josué R. Batista

Download or read book Learn OpenAI Whisper written by Josué R. Batista and published by Packt Publishing Ltd. This book was released on 2024-05-31 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master automatic speech recognition (ASR) with groundbreaking generative AI for unrivaled accuracy and versatility in audio processing Key Features Uncover the intricate architecture and mechanics behind Whisper's robust speech recognition Apply Whisper's technology in innovative projects, from audio transcription to voice synthesis Navigate the practical use of Whisper in real-world scenarios for achieving dynamic tech solutions Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionAs the field of generative AI evolves, so does the demand for intelligent systems that can understand human speech. Navigating the complexities of automatic speech recognition (ASR) technology is a significant challenge for many professionals. This book offers a comprehensive solution that guides you through OpenAI's advanced ASR system. You’ll begin your journey with Whisper's foundational concepts, gradually progressing to its sophisticated functionalities. Next, you’ll explore the transformer model, understand its multilingual capabilities, and grasp training techniques using weak supervision. The book helps you customize Whisper for different contexts and optimize its performance for specific needs. You’ll also focus on the vast potential of Whisper in real-world scenarios, including its transcription services, voice-based search, and the ability to enhance customer engagement. Advanced chapters delve into voice synthesis and diarization while addressing ethical considerations. By the end of this book, you'll have an understanding of ASR technology and have the skills to implement Whisper. Moreover, Python coding examples will equip you to apply ASR technologies in your projects as well as prepare you to tackle challenges and seize opportunities in the rapidly evolving world of voice recognition and processing.What you will learn Integrate Whisper into voice assistants and chatbots Use Whisper for efficient, accurate transcription services Understand Whisper's transformer model structure and nuances Fine-tune Whisper for specific language requirements globally Implement Whisper in real-time translation scenarios Explore voice synthesis capabilities using Whisper's robust tech Execute voice diarization with Whisper and NVIDIA's NeMo Navigate ethical considerations in advanced voice technology Who this book is for Learn OpenAI Whisper is designed for a diverse audience, including AI engineers, tech professionals, and students. It's ideal for those with a basic understanding of machine learning and Python programming, and an interest in voice technology, from developers integrating ASR in applications to researchers exploring the cutting-edge possibilities in artificial intelligence.

Computational Science – ICCS 2024

Download Computational Science – ICCS 2024 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031637720
Total Pages : 420 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Computational Science – ICCS 2024 by : Leonardo Franco

Download or read book Computational Science – ICCS 2024 written by Leonardo Franco and published by Springer Nature. This book was released on with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Artificial Neural Networks and Machine Learning – ICANN 2021

Download Artificial Neural Networks and Machine Learning – ICANN 2021 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303086362X
Total Pages : 617 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks and Machine Learning – ICANN 2021 by : Igor Farkaš

Download or read book Artificial Neural Networks and Machine Learning – ICANN 2021 written by Igor Farkaš and published by Springer Nature. This book was released on 2021-09-11 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes. In this volume, the papers focus on topics such as adversarial machine learning, anomaly detection, attention and transformers, audio and multimodal applications, bioinformatics and biosignal analysis, capsule networks and cognitive models. *The conference was held online 2021 due to the COVID-19 pandemic.

Automated Machine Learning

Download Automated Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030053180
Total Pages : 223 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Automated Machine Learning by : Frank Hutter

Download or read book Automated Machine Learning written by Frank Hutter and published by Springer. This book was released on 2019-05-17 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Deep Learning Theory and Applications

Download Deep Learning Theory and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031390598
Total Pages : 496 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Theory and Applications by : Donatello Conte

Download or read book Deep Learning Theory and Applications written by Donatello Conte and published by Springer Nature. This book was released on 2023-07-30 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consitiutes the refereed proceedings of the 4th International Conference on Deep Learning Theory and Applications, DeLTA 2023, held in Rome, Italy from 13 to 14 July 2023. The 9 full papers and 22 short papers presented were thoroughly reviewed and selected from the 42 qualified submissions. The scope of the conference includes such topics as models and algorithms; machine learning; big data analytics; computer vision applications; and natural language understanding.

Advances in Information and Communication

Download Advances in Information and Communication PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030123855
Total Pages : 1269 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Advances in Information and Communication by : Kohei Arai

Download or read book Advances in Information and Communication written by Kohei Arai and published by Springer. This book was released on 2019-02-01 with total page 1269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a remarkable collection of chapters that cover a wide range of topics in the areas of information and communication technologies and their real-world applications. It gathers the Proceedings of the Future of Information and Communication Conference 2019 (FICC 2019), held in San Francisco, USA from March 14 to 15, 2019. The conference attracted a total of 462 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. Following a double-blind peer review process, 160 submissions (including 15 poster papers) were ultimately selected for inclusion in these proceedings. The papers highlight relevant trends in, and the latest research on: Communication, Data Science, Ambient Intelligence, Networking, Computing, Security, and the Internet of Things. Further, they address all aspects of Information Science and communication technologies, from classical to intelligent, and both the theory and applications of the latest technologies and methodologies. Gathering chapters that discuss state-of-the-art intelligent methods and techniques for solving real-world problems, along with future research directions, the book represents both an interesting read and a valuable asset.

Advanced Intelligent Computing Technology and Applications

Download Advanced Intelligent Computing Technology and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819756723
Total Pages : 516 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Advanced Intelligent Computing Technology and Applications by : De-Shuang Huang

Download or read book Advanced Intelligent Computing Technology and Applications written by De-Shuang Huang and published by Springer Nature. This book was released on 2024 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 6-volume set LNAI 14875-14880 constitutes - in conjunction with the 13-volume set LNCS 14862-14874 and the 2-volume set LNBI 14881-14882 - the refereed proceedings of the 20th International Conference on Intelligent Computing, ICIC 2024, held in Tianjin, China, during August 5-8, 2024. The total of 863 regular papers were carefully reviewed and selected from 2189 submissions. The intelligent computing annual conference primarily aims to promote research, development and application of advanced intelligent computing techniques by providing a vibrant and effective forum across a variety of disciplines. This conference has a further aim of increasing the awareness of industry of advanced intelligent computing techniques and the economic benefits that can be gained by implementing them. The intelligent computing technology includes a range of techniques such as Artificial Intelligence, Pattern Recognition, Evolutionary Computing, Informatics Theories and Applications, Computational Neuroscience & Bioscience, Soft Computing, Human Computer Interface Issues, etc.

Artificial Neural Networks and Machine Learning – ICANN 2023

Download Artificial Neural Networks and Machine Learning – ICANN 2023 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031442040
Total Pages : 575 pages
Book Rating : 4.0/5 (314 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks and Machine Learning – ICANN 2023 by : Lazaros Iliadis

Download or read book Artificial Neural Networks and Machine Learning – ICANN 2023 written by Lazaros Iliadis and published by Springer Nature. This book was released on 2023-09-21 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 10-volume set LNCS 14254-14263 constitutes the proceedings of the 32nd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023. The 426 full papers and 9 short papers included in these proceedings were carefully reviewed and selected from 947 submissions. ICANN is a dual-track conference, featuring tracks in brain inspired computing on the one hand, and machine learning on the other, with strong cross-disciplinary interactions and applications.

Learning and Categorization in Modular Neural Networks

Download Learning and Categorization in Modular Neural Networks PDF Online Free

Author :
Publisher : Psychology Press
ISBN 13 : 1317781376
Total Pages : 257 pages
Book Rating : 4.3/5 (177 download)

DOWNLOAD NOW!


Book Synopsis Learning and Categorization in Modular Neural Networks by : Jacob M.J. Murre

Download or read book Learning and Categorization in Modular Neural Networks written by Jacob M.J. Murre and published by Psychology Press. This book was released on 2014-02-25 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a new neural network model called CALM, for categorization and learning in neural networks. The author demonstrates how this model can learn the word superiority effect for letter recognition, and discusses a series of studies that simulate experiments in implicit and explicit memory, involving normal and amnesic patients. Pathological, but psychologically accurate, behavior is produced by "lesioning" the arousal system of these models. A concise introduction to genetic algorithms, a new computing method based on the biological metaphor of evolution, and a demonstration on how these algorithms can design network architectures with superior performance are included in this volume. The role of modularity in parallel hardware and software implementations is considered, including transputer networks and a dedicated 400-processor neurocomputer built by the developers of CALM in cooperation with Delft Technical University. Concluding with an evaluation of the psychological and biological plausibility of CALM models, the book offers a general discussion of catastrophic interference, generalization, and representational capacity of modular neural networks. Researchers in cognitive science, neuroscience, computer simulation sciences, parallel computer architectures, and pattern recognition will be interested in this volume, as well as anyone engaged in the study of neural networks, neurocomputers, and neurosimulators.