Missing Data in Longitudinal Studies

Download Missing Data in Longitudinal Studies PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420011189
Total Pages : 324 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Missing Data in Longitudinal Studies by : Michael J. Daniels

Download or read book Missing Data in Longitudinal Studies written by Michael J. Daniels and published by CRC Press. This book was released on 2008-03-11 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ

Applied Missing Data Analysis

Download Applied Missing Data Analysis PDF Online Free

Author :
Publisher : Guilford Press
ISBN 13 : 1606236393
Total Pages : 401 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Applied Missing Data Analysis by : Craig K. Enders

Download or read book Applied Missing Data Analysis written by Craig K. Enders and published by Guilford Press. This book was released on 2010-04-23 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Walking readers step by step through complex concepts, this book translates missing data techniques into something that applied researchers and graduate students can understand and utilize in their own research. Enders explains the rationale and procedural details for maximum likelihood estimation, Bayesian estimation, multiple imputation, and models for handling missing not at random (MNAR) data. Easy-to-follow examples and small simulated data sets illustrate the techniques and clarify the underlying principles. The companion website includes data files and syntax for the examples in the book as well as up-to-date information on software. The book is accessible to substantive researchers while providing a level of detail that will satisfy quantitative specialists. This book will appeal to researchers and graduate students in psychology, education, management, family studies, public health, sociology, and political science. It will also serve as a supplemental text for doctoral-level courses or seminars in advanced quantitative methods, survey analysis, longitudinal data analysis, and multilevel modeling, and as a primary text for doctoral-level courses or seminars in missing data.

Statistical Analysis with Missing Data

Download Statistical Analysis with Missing Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118595696
Total Pages : 444 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis with Missing Data by : Roderick J. A. Little

Download or read book Statistical Analysis with Missing Data written by Roderick J. A. Little and published by John Wiley & Sons. This book was released on 2019-03-21 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives

Download Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470090435
Total Pages : 448 pages
Book Rating : 4.0/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives by : Andrew Gelman

Download or read book Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives written by Andrew Gelman and published by John Wiley & Sons. This book was released on 2004-09-03 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Contemporary Empirical Methods in Software Engineering

Download Contemporary Empirical Methods in Software Engineering PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030324893
Total Pages : 525 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Contemporary Empirical Methods in Software Engineering by : Michael Felderer

Download or read book Contemporary Empirical Methods in Software Engineering written by Michael Felderer and published by Springer Nature. This book was released on 2020-08-27 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents contemporary empirical methods in software engineering related to the plurality of research methodologies, human factors, data collection and processing, aggregation and synthesis of evidence, and impact of software engineering research. The individual chapters discuss methods that impact the current evolution of empirical software engineering and form the backbone of future research. Following an introductory chapter that outlines the background of and developments in empirical software engineering over the last 50 years and provides an overview of the subsequent contributions, the remainder of the book is divided into four parts: Study Strategies (including e.g. guidelines for surveys or design science); Data Collection, Production, and Analysis (highlighting approaches from e.g. data science, biometric measurement, and simulation-based studies); Knowledge Acquisition and Aggregation (highlighting literature research, threats to validity, and evidence aggregation); and Knowledge Transfer (discussing open science and knowledge transfer with industry). Empirical methods like experimentation have become a powerful means of advancing the field of software engineering by providing scientific evidence on software development, operation, and maintenance, but also by supporting practitioners in their decision-making and learning processes. Thus the book is equally suitable for academics aiming to expand the field and for industrial researchers and practitioners looking for novel ways to check the validity of their assumptions and experiences. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Handbook of Missing Data Methodology

Download Handbook of Missing Data Methodology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439854610
Total Pages : 600 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Missing Data Methodology by : Geert Molenberghs

Download or read book Handbook of Missing Data Methodology written by Geert Molenberghs and published by CRC Press. This book was released on 2014-11-06 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.

The Prevention and Treatment of Missing Data in Clinical Trials

Download The Prevention and Treatment of Missing Data in Clinical Trials PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 030918651X
Total Pages : 163 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Prevention and Treatment of Missing Data in Clinical Trials by : National Research Council

Download or read book The Prevention and Treatment of Missing Data in Clinical Trials written by National Research Council and published by National Academies Press. This book was released on 2010-12-21 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.

A First Course in Bayesian Statistical Methods

Download A First Course in Bayesian Statistical Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387924078
Total Pages : 270 pages
Book Rating : 4.3/5 (879 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Bayesian Statistical Methods by : Peter D. Hoff

Download or read book A First Course in Bayesian Statistical Methods written by Peter D. Hoff and published by Springer Science & Business Media. This book was released on 2009-06-02 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

Statistical Rethinking

Download Statistical Rethinking PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315362619
Total Pages : 488 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Statistical Rethinking by : Richard McElreath

Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Bayesian Statistical Methods

Download Bayesian Statistical Methods PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429510918
Total Pages : 288 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistical Methods by : Brian J. Reich

Download or read book Bayesian Statistical Methods written by Brian J. Reich and published by CRC Press. This book was released on 2019-04-12 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures. In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics: Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures, including sensitivity to priors Frequentist properties of Bayesian methods Case studies covering advanced topics illustrate the flexibility of the Bayesian approach: Semiparametric regression Handling of missing data using predictive distributions Priors for high-dimensional regression models Computational techniques for large datasets Spatial data analysis The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the book’s website. Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award. Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute.

Applied Missing Data Analysis

Download Applied Missing Data Analysis PDF Online Free

Author :
Publisher : Guilford Publications
ISBN 13 : 1462549861
Total Pages : 563 pages
Book Rating : 4.4/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Applied Missing Data Analysis by : Craig K. Enders

Download or read book Applied Missing Data Analysis written by Craig K. Enders and published by Guilford Publications. This book was released on 2022-08-31 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The most user-friendly and authoritative resource on missing data has been completely revised to make room for the latest developments that make handling missing data more effective. The second edition includes new methods based on factored regressions, newer model-based imputation strategies, and innovations in Bayesian analysis. State-of-the-art technical literature on missing data is translated into accessible guidelines for applied researchers and graduate students. The second edition takes an even, three-pronged approach to maximum likelihood estimation (MLE), Bayesian estimation as an alternative to MLE, and multiple imputation. Consistently organized chapters explain the rationale and procedural details for each technique and illustrate the analyses with engaging worked-through examples on such topics as young adult smoking, employee turnover, and chronic pain. The companion website includes datasets and analysis examples from the book, up-to-date software information, and other resources. Subject areas/Key words: advanced quantitative methods, management, survey, longitudinal, structural equation modeling, handling, how to handle, incomplete, multivariate, social research, behavioral sciences, statistical techniques, textbooks, seminars, doctoral courses, multiple imputation, models, MCAR, MNAR, Bayesian Audience: Researchers and graduate students in psychology, education, management, family studies, public health, sociology, and political science"--

Missing Data Analysis in Practice

Download Missing Data Analysis in Practice PDF Online Free

Author :
Publisher : Chapman and Hall/CRC
ISBN 13 : 9781482211924
Total Pages : 0 pages
Book Rating : 4.2/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Missing Data Analysis in Practice by : Trivellore Raghunathan

Download or read book Missing Data Analysis in Practice written by Trivellore Raghunathan and published by Chapman and Hall/CRC. This book was released on 2015-10-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on two general purpose approaches to data analysis that work well in practice: weighting and imputation. The book takes a very practical approach to the methods, with a number of datasets used to illustrate the key aspects. The datasets are taken from randomized trials, observational studies, and sample surveys. Keeping theoretical details to a minimum, the book is suitable for practitioners with only basic knowledge of statistics. The author’s SAS-based software, which can be used for all the examples, is available online.

Flexible Imputation of Missing Data, Second Edition

Download Flexible Imputation of Missing Data, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429960352
Total Pages : 444 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren

Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Multiple Imputation of Missing Data Using SAS

Download Multiple Imputation of Missing Data Using SAS PDF Online Free

Author :
Publisher : SAS Institute
ISBN 13 : 162959203X
Total Pages : 328 pages
Book Rating : 4.6/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Multiple Imputation of Missing Data Using SAS by : Patricia Berglund

Download or read book Multiple Imputation of Missing Data Using SAS written by Patricia Berglund and published by SAS Institute. This book was released on 2014-07-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.

Regression and Mediation Analysis Using Mplus

Download Regression and Mediation Analysis Using Mplus PDF Online Free

Author :
Publisher :
ISBN 13 : 9780982998311
Total Pages : 535 pages
Book Rating : 4.9/5 (983 download)

DOWNLOAD NOW!


Book Synopsis Regression and Mediation Analysis Using Mplus by : Bengt O. Muthen

Download or read book Regression and Mediation Analysis Using Mplus written by Bengt O. Muthen and published by . This book was released on 2016-07-06 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Bayesian Statistics the Fun Way

Download Bayesian Statistics the Fun Way PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 1593279566
Total Pages : 258 pages
Book Rating : 4.5/5 (932 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics the Fun Way by : Will Kurt

Download or read book Bayesian Statistics the Fun Way written by Will Kurt and published by No Starch Press. This book was released on 2019-07-09 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.