Topics in Optimal Transportation

Download Topics in Optimal Transportation PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470467267
Total Pages : 370 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Topics in Optimal Transportation by : Cédric Villani

Download or read book Topics in Optimal Transportation written by Cédric Villani and published by American Mathematical Soc.. This book was released on 2021-08-25 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive introduction to the theory of mass transportation with its many—and sometimes unexpected—applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of “optimal transportation” (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.

Optimal Transport

Download Optimal Transport PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540710507
Total Pages : 970 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Optimal Transport by : Cédric Villani

Download or read book Optimal Transport written by Cédric Villani and published by Springer Science & Business Media. This book was released on 2008-10-26 with total page 970 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.

Lectures on Optimal Transport

Download Lectures on Optimal Transport PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030721620
Total Pages : 250 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Optimal Transport by : Luigi Ambrosio

Download or read book Lectures on Optimal Transport written by Luigi Ambrosio and published by Springer Nature. This book was released on 2021-07-22 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations.

Optimal Transport for Applied Mathematicians

Download Optimal Transport for Applied Mathematicians PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319208284
Total Pages : 376 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Optimal Transport for Applied Mathematicians by : Filippo Santambrogio

Download or read book Optimal Transport for Applied Mathematicians written by Filippo Santambrogio and published by Birkhäuser. This book was released on 2015-10-17 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.

Optimal Transportation Networks

Download Optimal Transportation Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540693149
Total Pages : 204 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Optimal Transportation Networks by : Marc Bernot

Download or read book Optimal Transportation Networks written by Marc Bernot and published by Springer Science & Business Media. This book was released on 2009 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

Optimal Transportation and Applications

Download Optimal Transportation and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540448578
Total Pages : 176 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Optimal Transportation and Applications by : Luigi Ambrosio

Download or read book Optimal Transportation and Applications written by Luigi Ambrosio and published by Springer. This book was released on 2003-01-01 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading researchers in the field of Optimal Transportation, with different views and perspectives, contribute to this Summer School volume: Monge-Ampère and Monge-Kantorovich theory, shape optimization and mass transportation are linked, among others, to applications in fluid mechanics granular material physics and statistical mechanics, emphasizing the attractiveness of the subject from both a theoretical and applied point of view. The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory.

An Invitation to Statistics in Wasserstein Space

Download An Invitation to Statistics in Wasserstein Space PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030384381
Total Pages : 157 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis An Invitation to Statistics in Wasserstein Space by : Victor M. Panaretos

Download or read book An Invitation to Statistics in Wasserstein Space written by Victor M. Panaretos and published by Springer Nature. This book was released on 2020-03-10 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds). The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes). Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph.

Topics in Optimal Transportation

Download Topics in Optimal Transportation PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082183312X
Total Pages : 402 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Topics in Optimal Transportation by : Cédric Villani

Download or read book Topics in Optimal Transportation written by Cédric Villani and published by American Mathematical Soc.. This book was released on 2003 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cedric Villani's book is a lucid and very readable documentation of the tremendous recent analytic progress in ``optimal mass transportation'' theory and of its diverse and unexpected applications in optimization, nonlinear PDE, geometry, and mathematical physics. --Lawrence C. Evans, University of California at Berkeley In 1781, Gaspard Monge defined the problem of ``optimal transportation'', or the transferring of mass with the least possible amount of work, with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is at once an introduction to the field of optimal transportation and a survey of the research on the topic over the last 15 years. The book is intended for graduate students and researchers, and it covers both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.

Geometric Inequalities

Download Geometric Inequalities PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662074419
Total Pages : 346 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Geometric Inequalities by : Yurii D. Burago

Download or read book Geometric Inequalities written by Yurii D. Burago and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: A 1988 classic, covering Two-dimensional Surfaces; Domains on the Plane and on Surfaces; Brunn-Minkowski Inequality and Classical Isoperimetric Inequality; Isoperimetric Inequalities for Various Definitions of Area; and Inequalities Involving Mean Curvature.

Computational Optimal Transport

Download Computational Optimal Transport PDF Online Free

Author :
Publisher : Foundations and Trends(r) in M
ISBN 13 : 9781680835502
Total Pages : 272 pages
Book Rating : 4.8/5 (355 download)

DOWNLOAD NOW!


Book Synopsis Computational Optimal Transport by : Gabriel Peyre

Download or read book Computational Optimal Transport written by Gabriel Peyre and published by Foundations and Trends(r) in M. This book was released on 2019-02-12 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.

Optimal Transport Methods in Economics

Download Optimal Transport Methods in Economics PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691183465
Total Pages : 184 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Optimal Transport Methods in Economics by : Alfred Galichon

Download or read book Optimal Transport Methods in Economics written by Alfred Galichon and published by Princeton University Press. This book was released on 2018-08-14 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Transport Methods in Economics is the first textbook on the subject written especially for students and researchers in economics. Optimal transport theory is used widely to solve problems in mathematics and some areas of the sciences, but it can also be used to understand a range of problems in applied economics, such as the matching between job seekers and jobs, the determinants of real estate prices, and the formation of matrimonial unions. This is the first text to develop clear applications of optimal transport to economic modeling, statistics, and econometrics. It covers the basic results of the theory as well as their relations to linear programming, network flow problems, convex analysis, and computational geometry. Emphasizing computational methods, it also includes programming examples that provide details on implementation. Applications include discrete choice models, models of differential demand, and quantile-based statistical estimation methods, as well as asset pricing models. Authoritative and accessible, Optimal Transport Methods in Economics also features numerous exercises throughout that help you develop your mathematical agility, deepen your computational skills, and strengthen your economic intuition. The first introduction to the subject written especially for economists Includes programming examples Features numerous exercises throughout Ideal for students and researchers alike

Optimal Transport

Download Optimal Transport PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139993623
Total Pages : 317 pages
Book Rating : 4.1/5 (399 download)

DOWNLOAD NOW!


Book Synopsis Optimal Transport by : Yann Ollivier

Download or read book Optimal Transport written by Yann Ollivier and published by Cambridge University Press. This book was released on 2014-08-07 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of optimal transportation has its origins in the eighteenth century when the problem of transporting resources at a minimal cost was first formalised. Through subsequent developments, particularly in recent decades, it has become a powerful modern theory. This book contains the proceedings of the summer school 'Optimal Transportation: Theory and Applications' held at the Fourier Institute in Grenoble. The event brought together mathematicians from pure and applied mathematics, astrophysics, economics and computer science. Part I of this book is devoted to introductory lecture notes accessible to graduate students, while Part II contains research papers. Together, they represent a valuable resource on both fundamental and advanced aspects of optimal transportation, its applications, and its interactions with analysis, geometry, PDE and probability, urban planning and economics. Topics covered include Ricci flow, the Euler equations, functional inequalities, curvature-dimension conditions, and traffic congestion.

Gradient Flows

Download Gradient Flows PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 376438722X
Total Pages : 333 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Gradient Flows by : Luigi Ambrosio

Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2008-10-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

Model-free Hedging

Download Model-free Hedging PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351666231
Total Pages : 190 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Model-free Hedging by : Pierre Henry-Labordere

Download or read book Model-free Hedging written by Pierre Henry-Labordere and published by CRC Press. This book was released on 2017-05-25 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model-free Hedging: A Martingale Optimal Transport Viewpoint focuses on the computation of model-independent bounds for exotic options consistent with market prices of liquid instruments such as Vanilla options. The author gives an overview of Martingale Optimal Transport, highlighting the differences between the optimal transport and its martingale counterpart. This topic is then discussed in the context of mathematical finance.

Gradient Flows

Download Gradient Flows PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764373091
Total Pages : 330 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Gradient Flows by : Luigi Ambrosio

Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to a theory of gradient ?ows in spaces which are not nec- sarily endowed with a natural linear or di?erentiable structure. It is made of two parts, the ?rst one concerning gradient ?ows in metric spaces and the second one 2 1 devoted to gradient ?ows in the L -Wasserstein space of probability measures on p a separable Hilbert space X (we consider the L -Wasserstein distance, p? (1,?), as well). The two parts have some connections, due to the fact that the Wasserstein space of probability measures provides an important model to which the “metric” theory applies, but the book is conceived in such a way that the two parts can be read independently, the ?rst one by the reader more interested to Non-Smooth Analysis and Analysis in Metric Spaces, and the second one by the reader more oriented to theapplications in Partial Di?erential Equations, Measure Theory and Probability.

Optimal Transportation and Action-Minimizing Measures

Download Optimal Transportation and Action-Minimizing Measures PDF Online Free

Author :
Publisher : Edizioni della Normale
ISBN 13 : 9788876423307
Total Pages : 0 pages
Book Rating : 4.4/5 (233 download)

DOWNLOAD NOW!


Book Synopsis Optimal Transportation and Action-Minimizing Measures by : Alessio Figalli

Download or read book Optimal Transportation and Action-Minimizing Measures written by Alessio Figalli and published by Edizioni della Normale. This book was released on 2008-07-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we describe recent developments in the theory of optimal transportation, and some of its applications to fluid dynamics. Moreover we explore new variants of the original problem, and we try to figure out some common (and sometimes unexpected) features in this emerging variety of problems . In Chapter 1 we study the optimal transportation problem on manifolds with geometric costs coming from Tonelli Lagrangians, while in Chapter 2 we consider a generalization of the classical transportation problem called the optimal irrigation problem. Then, Chapter 3 is about the Brenier variational theory of incompressible flows, which concerns a weak formulation of the Euler equations viewed as a geodesic equation in the space of measure-preserving diffeomorphism. Chapter 4 is devoted to the study of regularity and uniqueness of solutions of Hamilton-Jacobi equations applying the Aubry-Mather theory. Finally, the last chapter deals with a DiPerna-Lions theory for martingale solutions of stochastic differential equations.

Optimal Learning

Download Optimal Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118309847
Total Pages : 416 pages
Book Rating : 4.1/5 (183 download)

DOWNLOAD NOW!


Book Synopsis Optimal Learning by : Warren B. Powell

Download or read book Optimal Learning written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2013-07-09 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the science of collecting information to make effective decisions Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and expensive. Designed for readers with an elementary background in probability and statistics, the book presents effective and practical policies illustrated in a wide range of applications, from energy, homeland security, and transportation to engineering, health, and business. This book covers the fundamental dimensions of a learning problem and presents a simple method for testing and comparing policies for learning. Special attention is given to the knowledge gradient policy and its use with a wide range of belief models, including lookup table and parametric and for online and offline problems. Three sections develop ideas with increasing levels of sophistication: Fundamentals explores fundamental topics, including adaptive learning, ranking and selection, the knowledge gradient, and bandit problems Extensions and Applications features coverage of linear belief models, subset selection models, scalar function optimization, optimal bidding, and stopping problems Advanced Topics explores complex methods including simulation optimization, active learning in mathematical programming, and optimal continuous measurements Each chapter identifies a specific learning problem, presents the related, practical algorithms for implementation, and concludes with numerous exercises. A related website features additional applications and downloadable software, including MATLAB and the Optimal Learning Calculator, a spreadsheet-based package that provides an introduction to learning and a variety of policies for learning.