Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Tools For Infinite Dimensional Analysis
Download Tools For Infinite Dimensional Analysis full books in PDF, epub, and Kindle. Read online Tools For Infinite Dimensional Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Tools for Infinite Dimensional Analysis by : Jeremy J. Becnel
Download or read book Tools for Infinite Dimensional Analysis written by Jeremy J. Becnel and published by CRC Press. This book was released on 2020-12-21 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past six decades, several extremely important fields in mathematics have been developed. Among these are Itô calculus, Gaussian measures on Banach spaces, Malliavan calculus, and white noise distribution theory. These subjects have many applications, ranging from finance and economics to physics and biology. Unfortunately, the background information required to conduct research in these subjects presents a tremendous roadblock. The background material primarily stems from an abstract subject known as infinite dimensional topological vector spaces. While this information forms the backdrop for these subjects, the books and papers written about topological vector spaces were never truly written for researchers studying infinite dimensional analysis. Thus, the literature for topological vector spaces is dense and difficult to digest, much of it being written prior to the 1960s. Tools for Infinite Dimensional Analysis aims to address these problems by providing an introduction to the background material for infinite dimensional analysis that is friendly in style and accessible to graduate students and researchers studying the above-mentioned subjects. It will save current and future researchers countless hours and promote research in these areas by removing an obstacle in the path to beginning study in areas of infinite dimensional analysis. Features Focused approach to the subject matter Suitable for graduate students as well as researchers Detailed proofs of primary results
Book Synopsis An Introduction to Infinite-Dimensional Analysis by : Giuseppe Da Prato
Download or read book An Introduction to Infinite-Dimensional Analysis written by Giuseppe Da Prato and published by Springer Science & Business Media. This book was released on 2006-08-25 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.
Book Synopsis Infinite-dimensional Analysis: Operators In Hilbert Space; Stochastic Calculus Via Representations, And Duality Theory by : Palle Jorgensen
Download or read book Infinite-dimensional Analysis: Operators In Hilbert Space; Stochastic Calculus Via Representations, And Duality Theory written by Palle Jorgensen and published by World Scientific. This book was released on 2021-01-15 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to make available to beginning graduate students, and to others, some core areas of analysis which serve as prerequisites for new developments in pure and applied areas. We begin with a presentation (Chapters 1 and 2) of a selection of topics from the theory of operators in Hilbert space, algebras of operators, and their corresponding spectral theory. This is a systematic presentation of interrelated topics from infinite-dimensional and non-commutative analysis; again, with view to applications. Chapter 3 covers a study of representations of the canonical commutation relations (CCRs); with emphasis on the requirements of infinite-dimensional calculus of variations, often referred to as Ito and Malliavin calculus, Chapters 4-6. This further connects to key areas in quantum physics.
Book Synopsis Quantum Probability and Related Topics by : L. Accardi
Download or read book Quantum Probability and Related Topics written by L. Accardi and published by World Scientific. This book was released on 1993 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Probability and Related Topics is a series of volumes based on material discussed at the various QP conferences. It aims to provide an update on the rapidly growing field of classical probability, quantum physics and functional analysis.
Book Synopsis Infinite Dimensional Optimization and Control Theory by : Hector O. Fattorini
Download or read book Infinite Dimensional Optimization and Control Theory written by Hector O. Fattorini and published by Cambridge University Press. This book was released on 1999-03-28 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: Treats optimal problems for systems described by ODEs and PDEs, using an approach that unifies finite and infinite dimensional nonlinear programming.
Book Synopsis Fundamentals of Infinite Dimensional Representation Theory by : Raymond C. Fabec
Download or read book Fundamentals of Infinite Dimensional Representation Theory written by Raymond C. Fabec and published by CRC Press. This book was released on 2018-10-03 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infinite dimensional representation theory blossomed in the latter half of the twentieth century, developing in part with quantum mechanics and becoming one of the mainstays of modern mathematics. Fundamentals of Infinite Dimensional Representation Theory provides an accessible account of the topics in analytic group representation theory and operator algebras from which much of the subject has evolved. It presents new and old results in a coherent and natural manner and studies a number of tools useful in various areas of this diversely applied subject. From Borel spaces and selection theorems to Mackey's theory of induction, measures on homogeneous spaces, and the theory of left Hilbert algebras, the author's self-contained treatment allows readers to choose from a wide variety of topics and pursue them independently according to their needs. Beyond serving as both a general reference and as a text for those requiring a background in group-operator algebra representation theory, for careful readers, this monograph helps reveal not only the subject's utility, but also its inherent beauty.
Book Synopsis Tools for Infinite Dimensional Analysis by : Jeremy J. Becnel
Download or read book Tools for Infinite Dimensional Analysis written by Jeremy J. Becnel and published by CRC Press. This book was released on 2020-12-28 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past six decades, several extremely important fields in mathematics have been developed. Among these are Itô calculus, Gaussian measures on Banach spaces, Malliavan calculus, and white noise distribution theory. These subjects have many applications, ranging from finance and economics to physics and biology. Unfortunately, the background information required to conduct research in these subjects presents a tremendous roadblock. The background material primarily stems from an abstract subject known as infinite dimensional topological vector spaces. While this information forms the backdrop for these subjects, the books and papers written about topological vector spaces were never truly written for researchers studying infinite dimensional analysis. Thus, the literature for topological vector spaces is dense and difficult to digest, much of it being written prior to the 1960s. Tools for Infinite Dimensional Analysis aims to address these problems by providing an introduction to the background material for infinite dimensional analysis that is friendly in style and accessible to graduate students and researchers studying the above-mentioned subjects. It will save current and future researchers countless hours and promote research in these areas by removing an obstacle in the path to beginning study in areas of infinite dimensional analysis. Features Focused approach to the subject matter Suitable for graduate students as well as researchers Detailed proofs of primary results
Book Synopsis Techniques of Variational Analysis by : Jonathan Borwein
Download or read book Techniques of Variational Analysis written by Jonathan Borwein and published by Springer Science & Business Media. This book was released on 2006-06-18 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Borwein is an authority in the area of mathematical optimization, and his book makes an important contribution to variational analysis Provides a good introduction to the topic
Book Synopsis Stability of Finite and Infinite Dimensional Systems by : Michael I. Gil'
Download or read book Stability of Finite and Infinite Dimensional Systems written by Michael I. Gil' and published by Springer Science & Business Media. This book was released on 1998-09-30 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis.
Book Synopsis Mathematical Foundations of Infinite-Dimensional Statistical Models by : Evarist Giné
Download or read book Mathematical Foundations of Infinite-Dimensional Statistical Models written by Evarist Giné and published by Cambridge University Press. This book was released on 2021-03-25 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: In nonparametric and high-dimensional statistical models, the classical Gauss–Fisher–Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics.
Author :Edited by Paul F. Kisak Publisher :Createspace Independent Publishing Platform ISBN 13 :9781523323999 Total Pages :190 pages Book Rating :4.3/5 (239 download)
Book Synopsis Hilbert Space by : Edited by Paul F. Kisak
Download or read book Hilbert Space written by Edited by Paul F. Kisak and published by Createspace Independent Publishing Platform. This book was released on 2016-01-07 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as infinite-dimensional function spaces. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer)-and ergodic theory, which forms the mathematical underpinning of thermodynamics. John von Neumann coined the term Hilbert space for the abstract concept that underlies many of these diverse applications. The success of Hilbert space methods ushered in a very fruitful era for functional analysis. Apart from the classical Euclidean spaces, examples of Hilbert spaces include spaces of square-integrable functions, spaces of sequences, Sobolev spaces consisting of generalized functions, and Hardy spaces of holomorphic functions. This book gives a mathematical overview of the definition and use of Hilbert Space.
Book Synopsis Ergodicity for Infinite Dimensional Systems by : Giuseppe Da Prato
Download or read book Ergodicity for Infinite Dimensional Systems written by Giuseppe Da Prato and published by Cambridge University Press. This book was released on 1996-05-16 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the only book on stochastic modelling of infinite dimensional dynamical systems.
Book Synopsis Selected Papers of Takeyuki Hida by : Takeyuki Hida
Download or read book Selected Papers of Takeyuki Hida written by Takeyuki Hida and published by World Scientific. This book was released on 2001 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics discussed in this book can be classified into three parts: (i) Gaussian processes. The most general and in fact final representation theory of Gaussian processes is included in this book. This theory is still referred to often and its developments are discussed.(ii) White noise analysis. This book includes the notes of the series of lectures delivered in 1975 at Carleton University in Ottawa. They describe the very original idea of introducing the notion of generalized Brownian functionals (nowadays called ?generalized white noise functionals?, and sometimes ?Hida distribution?.(iii) Variational calculus for random fields. This topic will certainly represent one of the driving research lines for probability theory in the next century, as can be seen from several papers in this volume
Book Synopsis Stochastic Equations in Infinite Dimensions by : Da Prato Guiseppe
Download or read book Stochastic Equations in Infinite Dimensions written by Da Prato Guiseppe and published by . This book was released on 2013-11-21 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Ito and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations."
Book Synopsis Convex Analysis and Variational Problems by : Ivar Ekeland
Download or read book Convex Analysis and Variational Problems written by Ivar Ekeland and published by SIAM. This book was released on 1999-12-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.
Book Synopsis Operator Calculus on Graphs by : René Schott
Download or read book Operator Calculus on Graphs written by René Schott and published by World Scientific. This book was released on 2012 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This pioneering book presents a study of the interrelationships among operator calculus, graph theory, and quantum probability in a unified manner, with significant emphasis on symbolic computations and an eye toward applications in computer science. Presented in this book are new methods, built on the algebraic framework of Clifford algebras, for tackling important real world problems related, but not limited to, wireless communications, neural networks, electrical circuits, transportation, and the world wide web. Examples are put forward in Mathematica throughout the book, together with packages for performing symbolic computations.
Book Synopsis Functions, Spaces, and Expansions by : Ole Christensen
Download or read book Functions, Spaces, and Expansions written by Ole Christensen and published by Springer Science & Business Media. This book was released on 2010-05-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required.