Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Theory Of Defects In Solids
Download Theory Of Defects In Solids full books in PDF, epub, and Kindle. Read online Theory Of Defects In Solids ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Theory of Defects in Solids by : A. M. Stoneham
Download or read book Theory of Defects in Solids written by A. M. Stoneham and published by Oxford University Press. This book was released on 2001 with total page 982 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the theory of defects in solids, concentrating on the electronic structure of point defects in insulators and semiconductors. The relations between different approaches are described, and the predictions of the theory compared critically with experiment. The physical assumptions and approximations are emphasized. The book begins with the perfect solid, then reviews the main methods of calculating defect energy levels and wave functions. The calculation and observable defect properties is discussed, and finally, the theory is applied to a range of defects that are very different in nature. This book is intended for research workers and graduate students interested in solid-state physics. From reviews of the hardback: 'It is unique and of great value to all interested in the basic aspects of defects in solids.' Physics Today 'This is a particularly worthy book, one which has long been needed by the theoretician and experimentalist alike.' Nature
Book Synopsis Defects in Solids by : Richard J. D. Tilley
Download or read book Defects in Solids written by Richard J. D. Tilley and published by John Wiley & Sons. This book was released on 2008-10-10 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a thorough understanding of the chemistry and physics of defects, enabling the reader to manipulate them in the engineering of materials. Reinforces theoretical concepts by placing emphasis on real world processes and applications. Includes two kinds of end-of-chapter problems: multiple choice (to test knowledge of terms and principles) and more extensive exercises and calculations (to build skills and understanding). Supplementary material on crystallography and band structure are included in separate appendices.
Book Synopsis Gauge Theory and Defects in Solids by : D.G.B. Edelen
Download or read book Gauge Theory and Defects in Solids written by D.G.B. Edelen and published by Elsevier. This book was released on 2012-12-02 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new series Mechanics and Physics of Discrete Systems aims to provide a coherent picture of the modern development of discrete physical systems. Each volume will offer an orderly perspective of disciplines such as molecular dynamics, crystal mechanics and/or physics, dislocation, etc. Emphasized in particular are the fundamentals of mechanics and physics that play an essential role in engineering applications.Volume 1, Gauge Theory and Defects in Solids, presents a detailed development of a rational theory of the dynamics of defects and damage in solids. Solutions to field equations are used to determine stresses, dislocation densities and currents that arise from histories of loading of boundaries of bodies. Analysed in detail is a gauge theory with a gauge group that is not semi-simple, and whose action occurs at the classical macroscopic level. Yang-Mills theory is applied where the state variables are elastic displacements in solids, determination of mechanical and electromagnetic observables by choice of gauge conditions is demonstrated, and practices of classical dislocation theory are derived from first principles.
Book Synopsis Micromechanics of Defects in Solids by : T. Mura
Download or read book Micromechanics of Defects in Solids written by T. Mura and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book stems from a course on Micromechanics that I started about fifteen years ago at Northwestern University. At that time, micromechanics was a rather unfamiliar subject. Although I repeated the course every year, I was never convinced that my notes have quite developed into a final manuscript because new topics emerged constantly requiring revisions, and additions. I finally came to realize that if this is continued, then I will never complete the book to my total satisfaction. Meanwhile, T. Mori and I had coauthored a book in Japanese, entitled Micromechanics, published by Baifu-kan, Tokyo, in 1975. It received an extremely favorable response from students and re searchers in Japan. This encouraged me to go ahead and publish my course notes in their latest version, as this book, which contains further development of the subject and is more comprehensive than the one published in Japanese. Micromechanics encompasses mechanics related to microstructures of materials. The method employed is a continuum theory of elasticity yet its applications cover a broad area relating to the mechanical behavior of materi als: plasticity, fracture and fatigue, constitutive equations, composite materi als, polycrystals, etc. These subjects are treated in this book by means of a powerful and unified method which is called the 'eigenstrain method. ' In particular, problems relating to inclusions and dislocations are most effectively analyzed by this method, and therefore, special emphasis is placed on these topics.
Book Synopsis Quasiparticle Theory of Defects in Solids by : D. I. Pushkarov
Download or read book Quasiparticle Theory of Defects in Solids written by D. I. Pushkarov and published by World Scientific. This book was released on 1991 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Describes the development and application of the quasiparticle method in the modern quantum theory of solids, and presents an original general nonlinear dynamics theory of the deformable solids with quasiparticle excitations. Acidic paper. Annotation copyrighted by Book News, Inc., Portland, OR.
Book Synopsis Imperfections in Crystalline Solids by : Wei Cai
Download or read book Imperfections in Crystalline Solids written by Wei Cai and published by Cambridge University Press. This book was released on 2016-09-15 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides students with a complete working knowledge of the properties of imperfections in crystalline solids. Readers will learn how to apply the fundamental principles of mechanics and thermodynamics to defect properties in materials science, gaining all the knowledge and tools needed to put this into practice in their own research. Beginning with an introduction to defects and a brief review of basic elasticity theory and statistical thermodynamics, the authors go on to guide the reader in a step-by-step way through point, line, and planar defects, with an emphasis on their structural, thermodynamic, and kinetic properties. Numerous end-of-chapter exercises enable students to put their knowledge into practice, and with solutions for instructors and MATLAB® programs available online, this is an essential text for advanced undergraduate and introductory graduate courses in crystal defects, as well as being ideal for self-study.
Download or read book Etching of Crystals written by K. Sangwal and published by Elsevier. This book was released on 2012-12-02 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in Solids, Volume 15: Etching of Crystals: Theory, Experiment, and Application focuses on the processes, reactions, and methodologies involved in the etching of crystals, including thermodynamics and diffusion. The publication first underscores the defects in crystals, detection of defects, and growth and dissolution of crystals. Discussions focus on thermodynamic theories, nature of pit sites, surface roughening during diffusion-controlled dissolution, growth controlled by simultaneous mass transfer and surface reactions, and chemical and thermal etching. The text then examines the theories of dissolution and etch-pit formation and the chemical aspects of the dissolution process, including catalytic reactions, dissolution of semiconductors, topochemical adsorption theories, and diffusion theories. The book tackles the solubility of crystals and complexes in solution and the kinetics and mechanism of dissolution. Topics include metallic crystals, semiconductors, stability of complexes, relationship between solubility, surface energy, and hardness of crystals, and solvents for crystals and estimation of crystal solubility in solvents other than water. The publication is a dependable source of data for readers interested in the etching of crystals.
Book Synopsis Theory of Defects in Semiconductors by : David A. Drabold
Download or read book Theory of Defects in Semiconductors written by David A. Drabold and published by Springer Science & Business Media. This book was released on 2007 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor science and technology is the art of defect engineering. The theoretical modeling of defects has improved dramatically over the past decade. These tools are now applied to a wide range of materials issues: quantum dots, buckyballs, spintronics, interfaces, amorphous systems, and many others. This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. Today's state-of-the-art, as well as tomorrow’s tools, are discussed: the supercell-pseudopotential method, the GW formalism,Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments, etc. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.
Book Synopsis An Introduction to Composite Materials by : D. Hull
Download or read book An Introduction to Composite Materials written by D. Hull and published by Cambridge University Press. This book was released on 1996-08-13 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.
Book Synopsis Advanced Calculations for Defects in Materials by : Audrius Alkauskas
Download or read book Advanced Calculations for Defects in Materials written by Audrius Alkauskas and published by John Wiley & Sons. This book was released on 2011-05-16 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling. The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances. The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.
Book Synopsis Introduction To Elasticity Theory For Crystal Defects (Second Edition) by : Robert W Balluffi
Download or read book Introduction To Elasticity Theory For Crystal Defects (Second Edition) written by Robert W Balluffi and published by World Scientific Publishing Company. This book was released on 2016-08-25 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a unified and self-sufficient and reader-friendly introduction to the anisotropic elasticity theory necessary to model a wide range of point, line, planar and volume type crystal defects (e.g., vacancies, dislocations, interfaces, inhomogeneities and inclusions).The necessary elasticity theory is first developed along with basic methods for obtaining solutions. This is followed by a detailed treatment of each defect type. Included are analyses of their elastic fields and energies, their interactions with imposed stresses and image stresses, and the interactions that occur between them, all employing the basic methods introduced earlier.All results are derived in full with intermediate steps shown, and 'it can be shown' is avoided. A particular effort is made to describe and compare different methods of solving important problems. Numerous exercises (with solutions) are provided to strengthen the reader's understanding and extend the immediate text.In the 2nd edition an additional chapter has been added which treats the important topic of the self-forces that are experienced by defects that are extended in more than one dimension. A considerable number of exercises have been added which expand the scope of the book and furnish further insights. Numerous sections of the book have been rewritten to provide additional clarity and scope.The major aim of the book is to provide, in one place, a unique and complete introduction to the anisotropic theory of elasticity for defects written in a manner suitable for both students and professionals.
Book Synopsis Topics in the Theory of Solid Materials by : J.M. Vail
Download or read book Topics in the Theory of Solid Materials written by J.M. Vail and published by CRC Press. This book was released on 2003-04-24 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in the Theory of Solid Materials provides a clear and rigorous introduction to a wide selection of topics in solid materials, overlapping traditional courses in both condensed matter physics and materials science and engineering. It introduces both the continuum properties of matter, traditionally the realm of materials science courses, and the quantum mechanical properties that are usually more emphasized in solid state physics courses, and integrates them in a manner that will be of use to students of either subject. The book spans a range of basic and more advanced topics, including stress and strain, wave propagation, thermal properties, surface waves, polarons, phonons, point defects, magnetism, and charge density waves. Topics in the Theory of Solid Materials is eminently suitable for graduates and final-year undergraduates in physics, materials science, and engineering, as well as more advanced researchers in academia and industry studying solid materials.
Book Synopsis Defects in Solids by : A.V. Chadwick
Download or read book Defects in Solids written by A.V. Chadwick and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Crystals, Defects and Microstructures by : Rob Phillips
Download or read book Crystals, Defects and Microstructures written by Rob Phillips and published by Cambridge University Press. This book was released on 2001-02-22 with total page 807 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the advances made in the field in recent years and looks at the various methods now used; ideal for graduate students and researchers.
Book Synopsis Solid-State Physics by : James Patterson
Download or read book Solid-State Physics written by James Patterson and published by Springer Science & Business Media. This book was released on 2010-12-08 with total page 841 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the standard solid state topics are covered, the basic ones often have more detailed derivations than is customary (with an empasis on crystalline solids). Several recent topics are introduced, as are some subjects normally included only in condensed matter physics. Lattice vibrations, electrons, interactions, and spin effects (mostly in magnetism) are discussed the most comprehensively. Many problems are included whose level is from "fill in the steps" to long and challenging, and the text is equipped with references and several comments about experiments with figures and tables.
Book Synopsis Principles of Condensed Matter Physics by : P. M. Chaikin
Download or read book Principles of Condensed Matter Physics written by P. M. Chaikin and published by Cambridge University Press. This book was released on 2000-09-28 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter, based on symmetries and conservation laws. It explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions, as well as discussing the structure and properties of materials with different symmetries. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalised rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.
Book Synopsis Defects in Two-Dimensional Materials by : Rafik Addou
Download or read book Defects in Two-Dimensional Materials written by Rafik Addou and published by Elsevier. This book was released on 2022-02-14 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in Two-Dimensional Materials addresses the fundamental physics and chemistry of defects in 2D materials and their effects on physical, electrical and optical properties. The book explores 2D materials such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMD). This knowledge will enable scientists and engineers to tune 2D materials properties to meet specific application requirements. The book reviews the techniques to characterize 2D material defects and compares the defects present in the various 2D materials (e.g. graphene, h-BN, TMDs, phosphorene, silicene, etc.). As two-dimensional materials research and development is a fast-growing field that could lead to many industrial applications, the primary objective of this book is to review, discuss and present opportunities in controlling defects in these materials to improve device performance in general or use the defects in a controlled way for novel applications. Presents the theory, physics and chemistry of 2D materials Catalogues defects of 2D materials and their impacts on materials properties and performance Reviews methods to characterize, control and engineer defects in 2D materials