Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Theory Of Ultrafilters
Download The Theory Of Ultrafilters full books in PDF, epub, and Kindle. Read online The Theory Of Ultrafilters ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Theory of Ultrafilters by : W.W. Comfort
Download or read book The Theory of Ultrafilters written by W.W. Comfort and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: An ultrafilter is a truth-value assignment to the family of subsets of a set, and a method of convergence to infinity. From the first (logical) property arises its connection with two-valued logic and model theory; from the second (convergence) property arises its connection with topology and set theory. Both these descriptions of an ultrafilter are connected with compactness. The model-theoretic property finds its expression in the construction of the ultraproduct and the compactness type of theorem of Los (implying the compactness theorem of first-order logic); and the convergence property leads to the process of completion by the adjunction of an ideal element for every ultrafilter-i. e. , to the Stone-Cech com pactification process (implying the Tychonoff theorem on the compact ness of products). Since these are two ways of describing the same mathematical object, it is reasonable to expect that a study of ultrafilters from these points of view will yield results and methods which can be fruitfully crossbred. This unifying aspect is indeed what we have attempted to emphasize in the present work.
Book Synopsis Ultrafilters across Mathematics by : Vitaly Bergelson
Download or read book Ultrafilters across Mathematics written by Vitaly Bergelson and published by American Mathematical Soc.. This book was released on 2010 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the state-of-the-art of applications in the whole spectrum of mathematics which are grounded on the use of ultrafilters and ultraproducts. It contains two general surveys on ultrafilters in set theory and on the ultraproduct construction, as well as papers that cover additive and combinatorial number theory, nonstandard methods and stochastic differential equations, measure theory, dynamics, Ramsey theory, algebra in the space of ultrafilters, and large cardinals.
Book Synopsis Ultrafilters and Topologies on Groups by : Yevhen G. Zelenyuk
Download or read book Ultrafilters and Topologies on Groups written by Yevhen G. Zelenyuk and published by Walter de Gruyter. This book was released on 2011 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results about ultrafilters. The contents of the book fall naturally into three parts. The first, comprising Chapters 1 through 5, introduces to topological groups and ultrafilters insofar as the semigroup operation on ultrafilters is not required. Constructions of some important topological groups are given. In particular, that of an extremally disconnected topological group based on a Ramsey ultrafilter. Also one shows that every infinite group admits a nondiscrete zero-dimensional topology in which all translations and the inversion are continuous. In the second part, Chapters 6 through 9, the Stone-Cêch compactification βG of a discrete group G is studied. For this, a special technique based on the concepts of a local left group and a local homomorphism is developed. One proves that if G is a countable torsion free group, then βG contains no nontrivial finite groups. Also the ideal structure of βG is investigated. In particular, one shows that for every infinite Abelian group G, βG contains 22G minimal right ideals. In the third part, using the semigroup βG, almost maximal topological and left topological groups are constructed and their ultrafilter semigroups are examined. Projectives in the category of finite semigroups are characterized. Also one shows that every infinite Abelian group with finitely many elements of order 2 is absolutely ω-resolvable, and consequently, can be partitioned into ω subsets such that every coset modulo infinite subgroup meets each subset of the partition. The book concludes with a list of open problems in the field. Some familiarity with set theory, algebra and topology is presupposed. But in general, the book is almost self-contained. It is aimed at graduate students and researchers working in topological algebra and adjacent areas.
Book Synopsis Combinatorial Set Theory by : Lorenz J. Halbeisen
Download or read book Combinatorial Set Theory written by Lorenz J. Halbeisen and published by Springer. This book was released on 2017-12-20 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.
Book Synopsis Algebra in the Stone-Cech Compactification by : Neil Hindman
Download or read book Algebra in the Stone-Cech Compactification written by Neil Hindman and published by Walter de Gruyter. This book was released on 2011-12-23 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second revised and extended edition of the successful book on the algebraic structure of the Stone-Čech compactification of a discrete semigroup and its combinatorial applications, primarily in the field known as Ramsey Theory. There has been very active research in the subject dealt with by the book in the 12 years which is now included in this edition. This book is a self-contained exposition of the theory of compact right semigroups for discrete semigroups and the algebraic properties of these objects. The methods applied in the book constitute a mosaic of infinite combinatorics, algebra, and topology. The reader will find numerous combinatorial applications of the theory, including the central sets theorem, partition regularity of matrices, multidimensional Ramsey theory, and many more.
Book Synopsis An Introduction to Measure Theory by : Terence Tao
Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Book Synopsis The Axiom of Choice by : Thomas J. Jech
Download or read book The Axiom of Choice written by Thomas J. Jech and published by Courier Corporation. This book was released on 2008-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and self-contained text examines the axiom's relative strengths and consequences, including its consistency and independence, relation to permutation models, and examples and counterexamples of its use. 1973 edition.
Book Synopsis Computability, Forcing and Descriptive Set Theory by : Douglas Cenzer
Download or read book Computability, Forcing and Descriptive Set Theory written by Douglas Cenzer and published by World Scientific Publishing Company. This book was released on 2019-12-31 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents some exciting new developments occurring on the interface between set theory and computability as well as their applications in algebra, analysis and topology. These include effective versions of Borel equivalence, Borel reducibility and Borel determinacy. It also covers algorithmic randomness and dimension, Ramsey sets and Ramsey spaces. Many of these topics are being discussed in the NSF-supported annual Southeastern Logic Symposium. Contents: Limits of the Kucerea-Gacs Coding Method (George Barmpalias and Andrew Lewis-Pye);Infinitary partition properties of sums of selective ultrafilters (Andreas Blass);Semiselective Coideals and Ramsey Sets (Carlos DiPrisco and Leonardo Pacheco);Survey on Topological Ramsey Spaces Dense in Forcings (Natasha Dobrinen);Higher Computability in the Reverse Mathematics of Borel Determinacy (Sherwood Hachtman);Computability and Definability (Valentina Harizanov);A Ramsey Space of Infinite Polyhedra and the Random Polyhedron (Jose G Mijares Palacios and Gabriel Padilla);Computable Reducibility for Cantor Space (Russell G Miller);Information vs Dimension - An Algorithmic Perspective (Jan Reimann); Readership: Graduate students and researchers interested in the interface between set theory and computability.
Book Synopsis Handbook of the History of General Topology by : C.E. Aull
Download or read book Handbook of the History of General Topology written by C.E. Aull and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first one of a work in several volumes, treating the history of the development of topology. The work contains papers which can be classified into 4 main areas. Thus there are contributions dealing with the life and work of individual topologists, with specific schools of topology, with research in topology in various countries, and with the development of topology in different periods. The work is not restricted to topology in the strictest sense but also deals with applications and generalisations in a broad sense. Thus it also treats, e.g., categorical topology, interactions with functional analysis, convergence spaces, and uniform spaces. Written by specialists in the field, it contains a wealth of information which is not available anywhere else.
Book Synopsis Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory by : Mauro Di Nasso
Download or read book Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory written by Mauro Di Nasso and published by Springer. This book was released on 2019-05-23 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this monograph is to give an accessible introduction to nonstandard methods and their applications, with an emphasis on combinatorics and Ramsey theory. It includes both new nonstandard proofs of classical results and recent developments initially obtained in the nonstandard setting. This makes it the first combinatorics-focused account of nonstandard methods to be aimed at a general (graduate-level) mathematical audience. This book will provide a natural starting point for researchers interested in approaching the rapidly growing literature on combinatorial results obtained via nonstandard methods. The primary audience consists of graduate students and specialists in logic and combinatorics who wish to pursue research at the interface between these areas.
Book Synopsis Geometric Set Theory by : Paul B. Larson
Download or read book Geometric Set Theory written by Paul B. Larson and published by American Mathematical Soc.. This book was released on 2020-07-16 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo–Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.
Book Synopsis Ultrafilters Throughout Mathematics by : Isaac Goldbring
Download or read book Ultrafilters Throughout Mathematics written by Isaac Goldbring and published by American Mathematical Society. This book was released on 2022-06-13 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrafilters and ultraproducts provide a useful generalization of the ordinary limit processes which have applications to many areas of mathematics. Typically, this topic is presented to students in specialized courses such as logic, functional analysis, or geometric group theory. In this book, the basic facts about ultrafilters and ultraproducts are presented to readers with no prior knowledge of the subject and then these techniques are applied to a wide variety of topics. The first part of the book deals solely with ultrafilters and presents applications to voting theory, combinatorics, and topology, while also dealing also with foundational issues. The second part presents the classical ultraproduct construction and provides applications to algebra, number theory, and nonstandard analysis. The third part discusses a metric generalization of the ultraproduct construction and gives example applications to geometric group theory and functional analysis. The final section returns to more advanced topics of a more foundational nature. The book should be of interest to undergraduates, graduate students, and researchers from all areas of mathematics interested in learning how ultrafilters and ultraproducts can be applied to their specialty.
Book Synopsis The Ultrapower Axiom by : Gabriel Goldberg
Download or read book The Ultrapower Axiom written by Gabriel Goldberg and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-03-21 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is about strong axioms of infinity (also known as large cardinal axioms) in set theory, and the ongoing search for natural models of these axioms. Assuming the Ultrapower Axiom, we solve various classical problems in set theory (e.g., the Generalized Continuum Hypothesis) and develop a theory of large cardinals that is much clearer than the theory that can be developed using only the standard axioms.
Book Synopsis Surveys in Set Theory by : A. R. D. Mathias
Download or read book Surveys in Set Theory written by A. R. D. Mathias and published by Cambridge University Press. This book was released on 1983-10-13 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises five expository articles and two research papers on topics of current interest in set theory and the foundations of mathematics. Articles by Baumgartner and Devlin introduce the reader to proper forcing. This is a development by Saharon Shelah of Cohen's method which has led to solutions of problems that resisted attack by forcing methods as originally developed in the 1960s. The article by Guaspari is an introduction to descriptive set theory, a subject that has developed dramatically in the last few years. Articles by Kanamori and Stanley discuss one of the most difficult concepts in contemporary set theory, that of the morass, first created by Ronald Jensen in 1971 to solve the gap-two conjecture in model theory, assuming Gödel's axiom of constructibility. The papers by Prikry and Shelah complete the volume by giving the reader the flavour of contemporary research in set theory. This book will be of interest to graduate students and research workers in set theory and mathematical logic.
Book Synopsis Category Theory in Context by : Emily Riehl
Download or read book Category Theory in Context written by Emily Riehl and published by Courier Dover Publications. This book was released on 2017-03-09 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Book Synopsis Model Theory : An Introduction by : David Marker
Download or read book Model Theory : An Introduction written by David Marker and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
Book Synopsis Problems and Theorems in Classical Set Theory by : Peter Komjath
Download or read book Problems and Theorems in Classical Set Theory written by Peter Komjath and published by Springer Science & Business Media. This book was released on 2006-11-22 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.