Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691161291
Total Pages : 286 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Michael Shearer

Download or read book Partial Differential Equations written by Michael Shearer and published by Princeton University Press. This book was released on 2015-03-01 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors

The Theory of Partial Differential Equations

Download The Theory of Partial Differential Equations PDF Online Free

Author :
Publisher : CUP Archive
ISBN 13 : 9780521087278
Total Pages : 518 pages
Book Rating : 4.0/5 (872 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Partial Differential Equations by : Sigeru Mizohata

Download or read book The Theory of Partial Differential Equations written by Sigeru Mizohata and published by CUP Archive. This book was released on 1973-08-02 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier series and fourier transforms; Distributions; Elliptic equations (fundamental theory); Initial value problems (cauchy problems); Evolution equations; Hyperbolic equations; Semi-linear hyperbolic equations; Green's functions and spectra.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118438434
Total Pages : 610 pages
Book Rating : 4.1/5 (184 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Thomas Hillen

Download or read book Partial Differential Equations written by Thomas Hillen and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : FriesenPress
ISBN 13 : 152555025X
Total Pages : 683 pages
Book Rating : 4.5/5 (255 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : T. Hillen

Download or read book Partial Differential Equations written by T. Hillen and published by FriesenPress. This book was released on 2019-05-15 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides more than 150 fully solved problems for linear partial differential equations and boundary value problems. Partial Differential Equations: Theory and Completely Solved Problems offers a modern introduction into the theory and applications of linear partial differential equations (PDEs). It is the material for a typical third year university course in PDEs. The material of this textbook has been extensively class tested over a period of 20 years in about 60 separate classes. The book is divided into two parts. Part I contains the Theory part and covers topics such as a classification of second order PDEs, physical and biological derivations of the heat, wave and Laplace equations, separation of variables, Fourier series, D’Alembert’s principle, Sturm-Liouville theory, special functions, Fourier transforms and the method of characteristics. Part II contains more than 150 fully solved problems, which are ranked according to their difficulty. The last two chapters include sample Midterm and Final exams for this course with full solutions.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470054565
Total Pages : 467 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Walter A. Strauss

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Floquet Theory for Partial Differential Equations

Download Floquet Theory for Partial Differential Equations PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034885733
Total Pages : 363 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Floquet Theory for Partial Differential Equations by : P.A. Kuchment

Download or read book Floquet Theory for Partial Differential Equations written by P.A. Kuchment and published by Birkhäuser. This book was released on 2012-12-06 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear differential equations with periodic coefficients constitute a well developed part of the theory of ordinary differential equations [17, 94, 156, 177, 178, 272, 389]. They arise in many physical and technical applications [177, 178, 272]. A new wave of interest in this subject has been stimulated during the last two decades by the development of the inverse scattering method for integration of nonlinear differential equations. This has led to significant progress in this traditional area [27, 71, 72, 111 119, 250, 276, 277, 284, 286, 287, 312, 313, 337, 349, 354, 392, 393, 403, 404]. At the same time, many theoretical and applied problems lead to periodic partial differential equations. We can mention, for instance, quantum mechanics [14, 18, 40, 54, 60, 91, 92, 107, 123, 157-160, 192, 193, 204, 315, 367, 412, 414, 415, 417], hydrodynamics [179, 180], elasticity theory [395], the theory of guided waves [87-89, 208, 300], homogenization theory [29, 41, 348], direct and inverse scattering [175, 206, 216, 314, 388, 406-408], parametric resonance theory [122, 178], and spectral theory and spectral geometry [103 105, 381, 382, 389]. There is a sjgnificant distinction between the cases of ordinary and partial differential periodic equations. The main tool of the theory of periodic ordinary differential equations is the so-called Floquet theory [17, 94, 120, 156, 177, 267, 272, 389]. Its central result is the following theorem (sometimes called Floquet-Lyapunov theorem) [120, 267].

Introduction to the Theory of Linear Partial Differential Equations

Download Introduction to the Theory of Linear Partial Differential Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080875351
Total Pages : 575 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Theory of Linear Partial Differential Equations by : J. Chazarain

Download or read book Introduction to the Theory of Linear Partial Differential Equations written by J. Chazarain and published by Elsevier. This book was released on 2011-08-18 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Theory of Linear Partial Differential Equations

Partial Differential Equations I

Download Partial Differential Equations I PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 144197055X
Total Pages : 673 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations I by : Michael E. Taylor

Download or read book Partial Differential Equations I written by Michael E. Taylor and published by Springer Science & Business Media. This book was released on 2010-10-29 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.

Introduction to Partial Differential Equations with Applications

Download Introduction to Partial Differential Equations with Applications PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048613217X
Total Pages : 434 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Partial Differential Equations with Applications by : E. C. Zachmanoglou

Download or read book Introduction to Partial Differential Equations with Applications written by E. C. Zachmanoglou and published by Courier Corporation. This book was released on 2012-04-20 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821849743
Total Pages : 778 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Lawrence C. Evans

Download or read book Partial Differential Equations written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 2010 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.

An Introduction to Partial Differential Equations

Download An Introduction to Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387216871
Total Pages : 447 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Partial Differential Equations by : Michael Renardy

Download or read book An Introduction to Partial Differential Equations written by Michael Renardy and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.

Foundations of the Classical Theory of Partial Differential Equations

Download Foundations of the Classical Theory of Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642580939
Total Pages : 264 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Foundations of the Classical Theory of Partial Differential Equations by : Yu.V. Egorov

Download or read book Foundations of the Classical Theory of Partial Differential Equations written by Yu.V. Egorov and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "...I think the volume is a great success ... a welcome addition to the literature ..." The Mathematical Intelligencer, 1993 "... It is comparable in scope with the great Courant-Hilbert Methods of Mathematical Physics, but it is much shorter, more up to date of course, and contains more elaborate analytical machinery...." The Mathematical Gazette, 1993

Partial Differential Equations in Action

Download Partial Differential Equations in Action PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319150936
Total Pages : 714 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations in Action by : Sandro Salsa

Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-04-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.

Partial Differential Equations of Mathematical Physics

Download Partial Differential Equations of Mathematical Physics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 9780486659640
Total Pages : 452 pages
Book Rating : 4.6/5 (596 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations of Mathematical Physics by : S. L. Sobolev

Download or read book Partial Differential Equations of Mathematical Physics written by S. L. Sobolev and published by Courier Corporation. This book was released on 1964-01-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Partial Differential Equations and Solitary Waves Theory

Download Partial Differential Equations and Solitary Waves Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364200251X
Total Pages : 746 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations and Solitary Waves Theory by : Abdul-Majid Wazwaz

Download or read book Partial Differential Equations and Solitary Waves Theory written by Abdul-Majid Wazwaz and published by Springer Science & Business Media. This book was released on 2010-05-28 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II will be most useful for graduate students and researchers in mathematics, engineering, and other related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University, Chicago, Illinois, USA.

Partial Differential Equations in Classical Mathematical Physics

Download Partial Differential Equations in Classical Mathematical Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521558464
Total Pages : 704 pages
Book Rating : 4.5/5 (584 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations in Classical Mathematical Physics by : Isaak Rubinstein

Download or read book Partial Differential Equations in Classical Mathematical Physics written by Isaak Rubinstein and published by Cambridge University Press. This book was released on 1998-04-28 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.

Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems

Download Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521434089
Total Pages : 678 pages
Book Rating : 4.4/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems by : Irena Lasiecka

Download or read book Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems written by Irena Lasiecka and published by Cambridge University Press. This book was released on 2000-02-13 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.