Characteristic Classes

Download Characteristic Classes PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691081229
Total Pages : 342 pages
Book Rating : 4.0/5 (812 download)

DOWNLOAD NOW!


Book Synopsis Characteristic Classes by : John Willard Milnor

Download or read book Characteristic Classes written by John Willard Milnor and published by Princeton University Press. This book was released on 1974 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Geometry of Characteristic Classes

Download Geometry of Characteristic Classes PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821821393
Total Pages : 202 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Characteristic Classes by : Shigeyuki Morita

Download or read book Geometry of Characteristic Classes written by Shigeyuki Morita and published by American Mathematical Soc.. This book was released on 2001 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Characteristic classes are central to the modern study of the topology and geometry of manifolds. They were first introduced in topology, where, for instance, they could be used to define obstructions to the existence of certain fiber bundles. Characteristic classes were later defined (via the Chern-Weil theory) using connections on vector bundles, thus revealing their geometric side. In the late 1960s new theories arose that described still finer structures. Examples of the so-called secondary characteristic classes came from Chern-Simons invariants, Gelfand-Fuks cohomology, and the characteristic classes of flat bundles. The new techniques are particularly useful for the study of fiber bundles whose structure groups are not finite dimensional. The theory of characteristic classes of surface bundles is perhaps the most developed. Here the special geometry of surfaces allows one to connect this theory to the theory of moduli space of Riemann surfaces, i.e., Teichmüller theory. In this book Morita presents an introduction to the modern theories of characteristic classes.

Loop Spaces, Characteristic Classes and Geometric Quantization

Download Loop Spaces, Characteristic Classes and Geometric Quantization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817647317
Total Pages : 318 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Loop Spaces, Characteristic Classes and Geometric Quantization by : Jean-Luc Brylinski

Download or read book Loop Spaces, Characteristic Classes and Geometric Quantization written by Jean-Luc Brylinski and published by Springer Science & Business Media. This book was released on 2009-12-30 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the differential geometry of manifolds, loop spaces, line bundles and groupoids, and the relations of this geometry to mathematical physics. Applications presented in the book involve anomaly line bundles on loop spaces and anomaly functionals, central extensions of loop groups, Kähler geometry of the space of knots, and Cheeger--Chern--Simons secondary characteristics classes. It also covers the Dirac monopole and Dirac’s quantization of the electrical charge.

From Calculus to Cohomology

Download From Calculus to Cohomology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521589567
Total Pages : 302 pages
Book Rating : 4.5/5 (895 download)

DOWNLOAD NOW!


Book Synopsis From Calculus to Cohomology by : Ib H. Madsen

Download or read book From Calculus to Cohomology written by Ib H. Madsen and published by Cambridge University Press. This book was released on 1997-03-13 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook on cohomology and curvature with emphasis on applications.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319550845
Total Pages : 358 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Loring W. Tu

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Fibre Bundles

Download Fibre Bundles PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475740085
Total Pages : 333 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Fibre Bundles by : D. Husemöller

Download or read book Fibre Bundles written by D. Husemöller and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a fibre bundle first arose out of questions posed in the 1930s on the topology and geometry of manifolds. By the year 1950 the defini tion of fibre bundle had been clearly formulated, the homotopy classifica tion of fibre bundles achieved, and the theory of characteristic classes of fibre bundles developed by several mathematicians, Chern, Pontrjagin, Stiefel, and Whitney. Steenrod's book, which appeared in 1950, gave a coherent treatment of the subject up to that time. About 1955 Milnor gave a construction of a universal fibre bundle for any topological group. This construction is also included in Part I along with an elementary proof that the bundle is universal. During the five years from 1950 to 1955, Hirzebruch clarified the notion of characteristic class and used it to prove a general Riemann-Roch theorem for algebraic varieties. This was published in his Ergebnisse Monograph. A systematic development of characteristic classes and their applications to manifolds is given in Part III and is based on the approach of Hirze bruch as modified by Grothendieck.

Complex Manifolds without Potential Theory

Download Complex Manifolds without Potential Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468493442
Total Pages : 158 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Complex Manifolds without Potential Theory by : Shiing-shen Chern

Download or read book Complex Manifolds without Potential Theory written by Shiing-shen Chern and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews of the second edition: "The new methods of complex manifold theory are very useful tools for investigations in algebraic geometry, complex function theory, differential operators and so on. The differential geometrical methods of this theory were developed essentially under the influence of Professor S.-S. Chern's works. The present book is a second edition... It can serve as an introduction to, and a survey of, this theory and is based on the author's lectures held at the University of California and at a summer seminar of the Canadian Mathematical Congress.... The text is illustrated by many examples... The book is warmly recommended to everyone interested in complex differential geometry." #Acta Scientiarum Mathematicarum, 41, 3-4#

Modern Classical Homotopy Theory

Download Modern Classical Homotopy Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821852868
Total Pages : 862 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Modern Classical Homotopy Theory by : Jeffrey Strom

Download or read book Modern Classical Homotopy Theory written by Jeffrey Strom and published by American Mathematical Soc.. This book was released on 2011-10-19 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Introduction to characteristic classes and index theory

Download Introduction to characteristic classes and index theory PDF Online Free

Author :
Publisher :
ISBN 13 : 9789728394127
Total Pages : 219 pages
Book Rating : 4.3/5 (941 download)

DOWNLOAD NOW!


Book Synopsis Introduction to characteristic classes and index theory by : Jean-Pierre Schneiders

Download or read book Introduction to characteristic classes and index theory written by Jean-Pierre Schneiders and published by . This book was released on 2000 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lectures on Chern-Weil Theory and Witten Deformations

Download Lectures on Chern-Weil Theory and Witten Deformations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812386580
Total Pages : 131 pages
Book Rating : 4.8/5 (123 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Chern-Weil Theory and Witten Deformations by : Weiping Zhang

Download or read book Lectures on Chern-Weil Theory and Witten Deformations written by Weiping Zhang and published by World Scientific. This book was released on 2001 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to ShiingOCoshen Chern and Andr(r) Weil, as well as a proof of the GaussOCoBonnetOCoChern theorem based on the MathaiOCoQuillen construction of Thom forms; the second part presents analytic proofs of the Poincar(r)OCoHopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten. Contents: ChernOCoWeil Theory for Characteristic Classes; Bott and DuistermaatOCoHeckman Formulas; GaussOCoBonnetOCoChern Theorem; Poincar(r)OCoHopf Index Formula: An Analytic Proof; Morse Inequalities: An Analytic Proof; ThomOCoSmale and Witten Complexes; Atiyah Theorem on Kervaire Semi-characteristic. Readership: Graduate students and researchers in differential geometry, topology and mathematical physics."

The Theory of Characteristic Classes

Download The Theory of Characteristic Classes PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 326 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Characteristic Classes by : John Willard Milnor

Download or read book The Theory of Characteristic Classes written by John Willard Milnor and published by . This book was released on 1959 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Differential Forms in Algebraic Topology

Download Differential Forms in Algebraic Topology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475739516
Total Pages : 319 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Differential Forms in Algebraic Topology by : Raoul Bott

Download or read book Differential Forms in Algebraic Topology written by Raoul Bott and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.

Combinatorial Algebraic Topology

Download Combinatorial Algebraic Topology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540719628
Total Pages : 392 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Combinatorial Algebraic Topology by : Dimitry Kozlov

Download or read book Combinatorial Algebraic Topology written by Dimitry Kozlov and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Geometry of Differential Forms

Download Geometry of Differential Forms PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821810453
Total Pages : 356 pages
Book Rating : 4.8/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Differential Forms by : Shigeyuki Morita

Download or read book Geometry of Differential Forms written by Shigeyuki Morita and published by American Mathematical Soc.. This book was released on 2001 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the times of Gauss, Riemann, and Poincare, one of the principal goals of the study of manifolds has been to relate local analytic properties of a manifold with its global topological properties. Among the high points on this route are the Gauss-Bonnet formula, the de Rham complex, and the Hodge theorem; these results show, in particular, that the central tool in reaching the main goal of global analysis is the theory of differential forms. The book by Morita is a comprehensive introduction to differential forms. It begins with a quick introduction to the notion of differentiable manifolds and then develops basic properties of differential forms as well as fundamental results concerning them, such as the de Rham and Frobenius theorems. The second half of the book is devoted to more advanced material, including Laplacians and harmonic forms on manifolds, the concepts of vector bundles and fiber bundles, and the theory of characteristic classes. Among the less traditional topics treated is a detailed description of the Chern-Weil theory. The book can serve as a textbook for undergraduate students and for graduate students in geometry.

Differential Analysis on Complex Manifolds

Download Differential Analysis on Complex Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387738916
Total Pages : 315 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Differential Analysis on Complex Manifolds by : Raymond O. Wells

Download or read book Differential Analysis on Complex Manifolds written by Raymond O. Wells and published by Springer Science & Business Media. This book was released on 2007-10-31 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A brand new appendix by Oscar Garcia-Prada graces this third edition of a classic work. In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Wells’s superb analysis also gives details of the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. Oscar Garcia-Prada’s appendix gives an overview of the developments in the field during the decades since the book appeared.

Topics in Cohomological Studies of Algebraic Varieties

Download Topics in Cohomological Studies of Algebraic Varieties PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764373423
Total Pages : 321 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Topics in Cohomological Studies of Algebraic Varieties by : Piotr Pragacz

Download or read book Topics in Cohomological Studies of Algebraic Varieties written by Piotr Pragacz and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory. The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Numerous examples will help to understand the mysteries of the cohomological theories presented. The book will be a useful guide to research in the above-mentioned areas. It is adressed to researchers and graduate students in algebraic geometry, algebraic topology, and singularity theory, as well as to mathematicians interested in homogeneous varieties and symmetric functions. Most of the material exposed in the volume has not appeared in books before. Contributors: Paolo Aluffi Michel Brion Anders Skovsted Buch Haibao Duan Ali Ulas Ozgur Kisisel Piotr Pragacz Jörg Schürmann Marek Szyjewski Harry Tamvakis

Scissors Congruences, Group Homology and Characteristic Classes

Download Scissors Congruences, Group Homology and Characteristic Classes PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9810245084
Total Pages : 178 pages
Book Rating : 4.8/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Scissors Congruences, Group Homology and Characteristic Classes by : Johan L. Dupont

Download or read book Scissors Congruences, Group Homology and Characteristic Classes written by Johan L. Dupont and published by World Scientific. This book was released on 2001 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume ?scissors-congruent?, i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time.