Statistical Strategies for Small Sample Research

Download Statistical Strategies for Small Sample Research PDF Online Free

Author :
Publisher : SAGE Publications
ISBN 13 : 1506320082
Total Pages : 394 pages
Book Rating : 4.5/5 (63 download)

DOWNLOAD NOW!


Book Synopsis Statistical Strategies for Small Sample Research by : Rick H. Hoyle

Download or read book Statistical Strategies for Small Sample Research written by Rick H. Hoyle and published by SAGE Publications. This book was released on 1999-03-30 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Newer statistical models, such as structural equation modeling and hierarchical linear modeling, require large sample sizes inappropriate for many research questions or unrealistic for many research arenas. How can researchers get the sophistication and flexibility of large sample studies without the requirement of prohibitively large samples? This book describes and illustrates statistical strategies that meet the sophistication/flexibility criteria for analyzing data from small samples of fewer than 150 cases. Contributions from some of the leading researchers in the field cover the use of multiple imputation software and how it can be used profitably with small data sets and missing data; ways to increase statistical power when sample size cannot be increased; and strategies for computing effect sizes and combining effect sizes across studies. Other contributions describe how to hypothesis test using the bootstrap; methods for pooling effect size indicators from single-case studies; frameworks for drawing inferences from cross-tabulated data; how to determine whether a correlation or covariance matrix warrants structure analysis; and what conditions indicate latent variable modeling is a viable approach to correct for unreliability in the mediator. Other topics include the use of dynamic factor analysis to model temporal processes by analyzing multivariate; time-series data from small numbers of individuals; techniques for coping with estimation problems in confirmatory factor analysis in small samples; how the state space model can be used with surprising accuracy with small data samples; and the use of partial least squares as a viable alternative to covariance-based SEM when the N is small and/or the number of variables in a model is large.

Small Sample Size Solutions

Download Small Sample Size Solutions PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1000760944
Total Pages : 270 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Small Sample Size Solutions by : Rens van de Schoot

Download or read book Small Sample Size Solutions written by Rens van de Schoot and published by Routledge. This book was released on 2020-02-13 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.

The Statistical Analysis of Small Data Sets

Download The Statistical Analysis of Small Data Sets PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0198872992
Total Pages : 161 pages
Book Rating : 4.1/5 (988 download)

DOWNLOAD NOW!


Book Synopsis The Statistical Analysis of Small Data Sets by : Markus Neuhäuser

Download or read book The Statistical Analysis of Small Data Sets written by Markus Neuhäuser and published by Oxford University Press. This book was released on 2024-08-30 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in the era of big data. However, small data sets are still common for ethical, financial, or practical reasons. Small sample sizes can cause researchers to seek out the most powerful methods to analyse their data, but they may also be wary that some methodologies and assumptions may not be appropriate when samples are small. The book offers advice on the statistical analysis of small data sets for various designs and levels of measurement, helping researchers to analyse such data sets, but also to evaluate and interpret others' analyses. The book discusses the potential challenges associated with a small sample, as well as the ways in which these challenges can be mitigated. General topics with strong relevance to small sample sizes such as meta-analysis, sequential and adaptive designs, and multiple testing are introduced. While the focus is on hypothesis tests and confidence intervals, Bayesian analyses are also covered. Code written in the statistical software R is presented to carry out the proposed methods, many of which are not limited to use on small data sets, and the book also discusses approaches to computing the power or the necessary sample size, respectively.

Federal Statistics, Multiple Data Sources, and Privacy Protection

Download Federal Statistics, Multiple Data Sources, and Privacy Protection PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309465370
Total Pages : 195 pages
Book Rating : 4.3/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Federal Statistics, Multiple Data Sources, and Privacy Protection by : National Academies of Sciences, Engineering, and Medicine

Download or read book Federal Statistics, Multiple Data Sources, and Privacy Protection written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-01-27 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals.

Statistical Data Analysis

Download Statistical Data Analysis PDF Online Free

Author :
Publisher : Woodhead Publishing Limited
ISBN 13 : 9780857091093
Total Pages : 0 pages
Book Rating : 4.0/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Statistical Data Analysis by : Milan Meloun

Download or read book Statistical Data Analysis written by Milan Meloun and published by Woodhead Publishing Limited. This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, computer supported data analysis by statistical methods has been one of the fastest growth areas in chemometrics, biometrics and other related branches of natural, technical and social sciences. This has been strongly supported by the development of exploratory data analysis, testing assumptions about data, model and statistical methods and computer intensive techniques. This book presents a combination of individual topics with solved problems and a collection of experimental tasks. Methods suitable for extreme or small and large datasets are described. Presents a combination of individual topics in one complete volume featuring statistical analysis of univariate and multivariate data Interspersed throughout with solved problems and experimental tasks suitable for extreme or small and large datasets Features the interpretation of results based on the comprehensive information about data behaviour and validity of used assumptions

Handbook of Statistical Analysis and Data Mining Applications

Download Handbook of Statistical Analysis and Data Mining Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0124166458
Total Pages : 824 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Analysis and Data Mining Applications by : Ken Yale

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Small Clinical Trials

Download Small Clinical Trials PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309171148
Total Pages : 221 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Small Clinical Trials by : Institute of Medicine

Download or read book Small Clinical Trials written by Institute of Medicine and published by National Academies Press. This book was released on 2001-01-01 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.

A Handbook of Small Data Sets

Download A Handbook of Small Data Sets PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000064964
Total Pages : 476 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis A Handbook of Small Data Sets by : David J. Hand

Download or read book A Handbook of Small Data Sets written by David J. Hand and published by CRC Press. This book was released on 1993-11-01 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book should be of interest to statistics lecturers who want ready-made data sets complete with notes for teaching.

Statistical Techniques for Data Analysis

Download Statistical Techniques for Data Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0203492390
Total Pages : 294 pages
Book Rating : 4.2/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Statistical Techniques for Data Analysis by : John K. Taylor

Download or read book Statistical Techniques for Data Analysis written by John K. Taylor and published by CRC Press. This book was released on 2004-01-14 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book appeared, computers have come to the aid of modern experimenters and data analysts, bringing with them data analysis techniques that were once beyond the calculational reach of even professional statisticians. Today, scientists in every field have access to the techniques and technology they need to analyze stat

Advances in Data Science and Classification

Download Advances in Data Science and Classification PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642722539
Total Pages : 678 pages
Book Rating : 4.6/5 (427 download)

DOWNLOAD NOW!


Book Synopsis Advances in Data Science and Classification by : Alfredo Rizzi

Download or read book Advances in Data Science and Classification written by Alfredo Rizzi and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: International Federation of Classification Societies The International Federation of Classification Societies (lFCS) is an agency for the dissemination of technical and scientific information concerning classification and multivariate data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) by the following Scientific Societies and Groups: - British Classification Society - BCS - Classification Society of North America - CSNA - Gesellschaft fUr Klassification - GfKI - Japanese Classification Society - JCS - Classification Group ofItalian Statistical Society - CGSIS - Societe Francophone de Classification - SFC Now the IFCS includes also the following Societies: - Dutch-Belgian Classification Society - VOC - Polish Classification Section - SKAD - Portuguese Classification Association - CLAD - Group at Large - Korean Classification Society - KCS IFCS-98, the Sixth Conference of the International Federation of Classification Societies, was held in Rome, from July 21 to 24, 1998. Five preceding conferences were held in Aachen (Germany), Charlottesville (USA), Edinburgh (UK), Paris (France), Kobe (Japan).

Statistical Analysis with Missing Data

Download Statistical Analysis with Missing Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118595696
Total Pages : 444 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis with Missing Data by : Roderick J. A. Little

Download or read book Statistical Analysis with Missing Data written by Roderick J. A. Little and published by John Wiley & Sons. This book was released on 2019-03-21 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.

Statistical Analysis Quick Reference Guidebook

Download Statistical Analysis Quick Reference Guidebook PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 9781412925600
Total Pages : 280 pages
Book Rating : 4.9/5 (256 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis Quick Reference Guidebook by : Alan C. Elliott

Download or read book Statistical Analysis Quick Reference Guidebook written by Alan C. Elliott and published by SAGE. This book was released on 2007 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical `cut to the chase′ handbook that quickly explains the when, where, and how of statistical data analysis as it is used for real-world decision-making in a wide variety of disciplines. In this one-stop reference, the authors provide succinct guidelines for performing an analysis, avoiding pitfalls, interpreting results and reporting outcomes.

Frontiers in Massive Data Analysis

Download Frontiers in Massive Data Analysis PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309287812
Total Pages : 191 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Frontiers in Massive Data Analysis by : National Research Council

Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Statistical Methods

Download Statistical Methods PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080498221
Total Pages : 694 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods by : Rudolf J. Freund

Download or read book Statistical Methods written by Rudolf J. Freund and published by Elsevier. This book was released on 2003-01-07 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters

Quantifying the User Experience

Download Quantifying the User Experience PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 0128025484
Total Pages : 374 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Quantifying the User Experience by : Jeff Sauro

Download or read book Quantifying the User Experience written by Jeff Sauro and published by Morgan Kaufmann. This book was released on 2016-07-12 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantifying the User Experience: Practical Statistics for User Research, Second Edition, provides practitioners and researchers with the information they need to confidently quantify, qualify, and justify their data. The book presents a practical guide on how to use statistics to solve common quantitative problems that arise in user research. It addresses questions users face every day, including, Is the current product more usable than our competition? Can we be sure at least 70% of users can complete the task on their first attempt? How long will it take users to purchase products on the website? This book provides a foundation for statistical theories and the best practices needed to apply them. The authors draw on decades of statistical literature from human factors, industrial engineering, and psychology, as well as their own published research, providing both concrete solutions (Excel formulas and links to their own web-calculators), along with an engaging discussion on the statistical reasons why tests work and how to effectively communicate results. Throughout this new edition, users will find updates on standardized usability questionnaires, a new chapter on general linear modeling (correlation, regression, and analysis of variance), with updated examples and case studies throughout. - Completely updated to provide practical guidance on solving usability testing problems with statistics for any project, including those using Six Sigma practices - Includes new and revised information on standardized usability questionnaires - Includes a completely new chapter introducing correlation, regression, and analysis of variance - Shows practitioners which test to use, why they work, and best practices for application, along with easy-to-use Excel formulas and web-calculators for analyzing data - Recommends ways for researchers and practitioners to communicate results to stakeholders in plain English

Permutation Tests for Complex Data

Download Permutation Tests for Complex Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470689523
Total Pages : 448 pages
Book Rating : 4.6/5 (895 download)

DOWNLOAD NOW!


Book Synopsis Permutation Tests for Complex Data by : Fortunato Pesarin

Download or read book Permutation Tests for Complex Data written by Fortunato Pesarin and published by John Wiley & Sons. This book was released on 2010-02-25 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex multivariate testing problems are frequently encountered in many scientific disciplines, such as engineering, medicine and the social sciences. As a result, modern statistics needs permutation testing for complex data with low sample size and many variables, especially in observational studies. The Authors give a general overview on permutation tests with a focus on recent theoretical advances within univariate and multivariate complex permutation testing problems, this book brings the reader completely up to date with today’s current thinking. Key Features: Examines the most up-to-date methodologies of univariate and multivariate permutation testing. Includes extensive software codes in MATLAB, R and SAS, featuring worked examples, and uses real case studies from both experimental and observational studies. Includes a standalone free software NPC Test Release 10 with a graphical interface which allows practitioners from every scientific field to easily implement almost all complex testing procedures included in the book. Presents and discusses solutions to the most important and frequently encountered real problems in multivariate analyses. A supplementary website containing all of the data sets examined in the book along with ready to use software codes. Together with a wide set of application cases, the Authors present a thorough theory of permutation testing both with formal description and proofs, and analysing real case studies. Practitioners and researchers, working in different scientific fields such as engineering, biostatistics, psychology or medicine will benefit from this book.

Practical Statistics for Data Scientists

Download Practical Statistics for Data Scientists PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491952911
Total Pages : 322 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Practical Statistics for Data Scientists by : Peter Bruce

Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data