Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Semiconductor Device In Radiation Damage Research
Download The Semiconductor Device In Radiation Damage Research full books in PDF, epub, and Kindle. Read online The Semiconductor Device In Radiation Damage Research ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Radiation Effects in Advanced Semiconductor Materials and Devices by : C. Claeys
Download or read book Radiation Effects in Advanced Semiconductor Materials and Devices written by C. Claeys and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This wide-ranging book summarizes the current knowledge of radiation defects in semiconductors, outlining the shortcomings of present experimental and modelling techniques and giving an outlook on future developments. It also provides information on the application of sensors in nuclear power plants.
Book Synopsis Radiation Effects in Semiconductors by : Krzysztof Iniewski
Download or read book Radiation Effects in Semiconductors written by Krzysztof Iniewski and published by CRC Press. This book was released on 2018-09-03 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Space applications, nuclear physics, military operations, medical imaging, and especially electronics (modern silicon processing) are obvious fields in which radiation damage can have serious consequences, i.e., degradation of MOS devices and circuits. Zeroing in on vital aspects of this broad and complex topic, Radiation Effects in Semiconductors addresses the ever-growing need for a clear understanding of radiation effects on semiconductor devices and circuits to combat potential damage it can cause. Features a chapter authored by renowned radiation authority Lawrence T. Clark on Radiation Hardened by Design SRAM Strategies for TID and SEE Mitigation This book analyzes the radiation problem, focusing on the most important aspects required for comprehending the degrading effects observed in semiconductor devices, circuits, and systems when they are irradiated. It explores how radiation interacts with solid materials, providing a detailed analysis of three ways this occurs: Photoelectric effect, Compton effect, and creation of electron-positron pairs. The author explains that the probability of these three effects occurring depends on the energy of the incident photon and the atomic number of the target. The book also discusses the effects that photons can have on matter—in terms of ionization effects and nuclear displacement Written for post-graduate researchers, semiconductor engineers, and nuclear and space engineers with some electronics background, this carefully constructed reference explains how ionizing radiation is creating damage in semiconducting devices and circuits and systems—and how that damage can be avoided in areas such as military/space missions, nuclear applications, plasma damage, and X-ray-based techniques. It features top-notch international experts in industry and academia who address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches.
Book Synopsis Semiconductor Radiation Detectors by : Gerhard Lutz
Download or read book Semiconductor Radiation Detectors written by Gerhard Lutz and published by Springer. This book was released on 2007-06-15 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from basic principles, this book describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. The author, whose own contributions to these developments have been significant, explains the working principles of semiconductor radiation detectors in an intuitive way. Broad coverage is also given to electronic signal readout and to the subject of radiation damage.
Book Synopsis Reliability And Radiation Effects In Compound Semiconductors by : Allan H Johnston
Download or read book Reliability And Radiation Effects In Compound Semiconductors written by Allan H Johnston and published by World Scientific. This book was released on 2010-04-27 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. It starts with first principles, and shows how advances in device design and manufacturing have suppressed many of the older reliability mechanisms.It is the first book that comprehensively covers reliability and radiation effects in optoelectronic as well as microelectronic devices. It contrasts reliability mechanisms of compound semiconductors with those of silicon-based devices, and shows that the reliability of many compound semiconductors has improved to the level where they can be used for ten years or more with low failure rates.
Book Synopsis Radiation Effects in Semiconductors and Semiconductor Devices by : V. S. Vavilov
Download or read book Radiation Effects in Semiconductors and Semiconductor Devices written by V. S. Vavilov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Ionizing Radiation Effects in Electronics by : Marta Bagatin
Download or read book Ionizing Radiation Effects in Electronics written by Marta Bagatin and published by CRC Press. This book was released on 2018-09-03 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ionizing Radiation Effects in Electronics: From Memories to Imagers delivers comprehensive coverage of the effects of ionizing radiation on state-of-the-art semiconductor devices. The book also offers valuable insight into modern radiation-hardening techniques. The text begins by providing important background information on radiation effects, their underlying mechanisms, and the use of Monte Carlo techniques to simulate radiation transport and the effects of radiation on electronics. The book then: Explains the effects of radiation on digital commercial devices, including microprocessors and volatile and nonvolatile memories—static random-access memories (SRAMs), dynamic random-access memories (DRAMs), and Flash memories Examines issues like soft errors, total dose, and displacement damage, together with hardening-by-design solutions for digital circuits, field-programmable gate arrays (FPGAs), and mixed-analog circuits Explores the effects of radiation on fiber optics and imager devices such as complementary metal-oxide-semiconductor (CMOS) sensors and charge-coupled devices (CCDs) Featuring real-world examples, case studies, extensive references, and contributions from leading experts in industry and academia, Ionizing Radiation Effects in Electronics: From Memories to Imagers is suitable both for newcomers who want to become familiar with radiation effects and for radiation experts who are looking for more advanced material or to make effective use of beam time.
Book Synopsis Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices by : Dan M. Fleetwood
Download or read book Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices written by Dan M. Fleetwood and published by World Scientific. This book was released on 2004 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metalOCooxideOCosemiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes the background material necessary for understanding radiation effects at a more general level. Contents: Single Event Effects in Avionics and on the Ground (E Normand); Soft Errors in Commercial Integrated Circuits (R C Baumann); System Level Single Event Upset Mitigation Strategies (W F Heidergott); Space Radiation Effects in Optocouplers (R A Reed et al.); The Effects of Space Radiation Exposure on Power MOSFETs: A Review (K Shenai et al.); Total Dose Effects in Linear Bipolar Integrated Circuits (H J Barnaby); Hardness Assurance for Commercial Microelectronics (R L Pease); Switching Oxide Traps (T R Oldham); Online and Realtime Dosimetry Using Optically Stimulated Luminescence (L Dusseau & J Gasiot); and other articles. Readership: Practitioners, researchers, managers and graduate students in electrical and electronic engineering, semiconductor science and technology, and microelectronics."
Book Synopsis Radiation Effects on Semiconductor Devices by : Los Alamos Scientific Laboratory
Download or read book Radiation Effects on Semiconductor Devices written by Los Alamos Scientific Laboratory and published by . This book was released on 1961 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Radiation Effects in Silicon Carbide by : A.A. Lebedev
Download or read book Radiation Effects in Silicon Carbide written by A.A. Lebedev and published by Materials Research Forum LLC. This book was released on 2017 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book reviews the most interesting research concerning the radiation defects formed in 6H-, 4H-, and 3C-SiC under irradiation with electrons, neutrons, and some kinds of ions. The electrical parameters that make SiC a promising material for applications in modern electronics are discussed in detail. Specific features of the crystal structure of SiC are considered. It is shown that, when wide-bandgap semiconductors are studied, it is necessary to take into account the temperature dependence of the carrier removal rate, which is a standard parameter for determining the radiation hardness of semiconductors. The carrier removal rate values obtained by irradiation of various SiC polytypes with n- and p-type conductivity are analyzed in relation to the type and energy of the irradiating particles. The influence exerted by the energy of charged particles on how radiation defects are formed and conductivity is compensated in semiconductors under irradiation is analyzed. Furthermore, the possibility to produce controlled transformation of silicon carbide polytype is considered. The involvement of radiation defects in radiative and nonradiative recombination processes in SiC is analyzed. Data are also presented regarding the degradation of particular SiC electronic devices under the influence of radiation and a conclusion is made regarding the radiation resistance of SiC. Lastly, the radiation hardness of devices based on silicon and silicon carbide are compared.
Book Synopsis Semiconductor Detector Systems by : Helmuth Spieler
Download or read book Semiconductor Detector Systems written by Helmuth Spieler and published by OUP Oxford. This book was released on 2005-08-25 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor sensors patterned at the micron scale combined with custom-designed integrated circuits have revolutionized semiconductor radiation detector systems. Designs covering many square meters with millions of signal channels are now commonplace in high-energy physics and the technology is finding its way into many other fields, ranging from astrophysics to experiments at synchrotron light sources and medical imaging. This book is the first to present a comprehensive discussion of the many facets of highly integrated semiconductor detector systems, covering sensors, signal processing, transistors and circuits, low-noise electronics, and radiation effects. The diversity of design approaches is illustrated in a chapter describing systems in high-energy physics, astronomy, and astrophysics. Finally a chapter "Why things don't work" discusses common pitfalls. Profusely illustrated, this book provides a unique reference in a key area of modern science.
Book Synopsis Ionizing Radiation Effects in MOS Devices and Circuits by : T. P. Ma
Download or read book Ionizing Radiation Effects in MOS Devices and Circuits written by T. P. Ma and published by John Wiley & Sons. This book was released on 1989-04-18 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive overview describing the effects of ionizing radiation on MOS devices, as well as how to design, fabricate, and test integrated circuits intended for use in a radiation environment. Also addresses process-induced radiation effects in the fabrication of high-density circuits. Reviews the history of radiation-hard technology, providing background information for those new to the field. Includes a comprehensive review of the literature and an annotated listing of research activities in radiation-hardness research.
Book Synopsis Handbook of Particle Detection and Imaging by : Claus Grupen
Download or read book Handbook of Particle Detection and Imaging written by Claus Grupen and published by Springer Science & Business Media. This book was released on 2012-01-08 with total page 1251 pages. Available in PDF, EPUB and Kindle. Book excerpt: The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Book Synopsis Particle Physics Reference Library by : Christian W. Fabjan
Download or read book Particle Physics Reference Library written by Christian W. Fabjan and published by Springer Nature. This book was released on 2020 with total page 1083 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Book Synopsis Integrated Circuit Design for Radiation Environments by : Stephen J. Gaul
Download or read book Integrated Circuit Design for Radiation Environments written by Stephen J. Gaul and published by John Wiley & Sons. This book was released on 2019-12-03 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today’s space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.
Author :National Academies of Sciences, Engineering, and Medicine Publisher :National Academies Press ISBN 13 :030947082X Total Pages :89 pages Book Rating :4.3/5 (94 download)
Book Synopsis Testing at the Speed of Light by : National Academies of Sciences, Engineering, and Medicine
Download or read book Testing at the Speed of Light written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-06-08 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spacecraft depend on electronic components that must perform reliably over missions measured in years and decades. Space radiation is a primary source of degradation, reliability issues, and potentially failure for these electronic components. Although simulation and modeling are valuable for understanding the radiation risk to microelectronics, there is no substitute for testing, and an increased use of commercial-off-the- shelf parts in spacecraft may actually increase requirements for testing, as opposed to simulation and modeling. Testing at the Speed of Light evaluates the nation's current capabilities and future needs for testing the effects of space radiation on microelectronics to ensure mission success and makes recommendations on how to provide effective stewardship of the necessary radiation test infrastructure for the foreseeable future.
Book Synopsis Electronics for Radiation Detection by : Krzysztof Iniewski
Download or read book Electronics for Radiation Detection written by Krzysztof Iniewski and published by CRC Press. This book was released on 2018-09-03 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a growing need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Assessing the billion-dollar market for detection equipment in the context of medical imaging using ionizing radiation, Electronics for Radiation Detection presents valuable information that will help integrated circuit (IC) designers and other electronics professionals take full advantage of the tremendous developments and opportunities associated with this burgeoning field. Assembling contributions from industrial and academic experts, this book— Addresses the state of the art in the design of semiconductor detectors, integrated circuits, and other electronics used in radiation detection Analyzes the main effects of radiation in semiconductor devices and circuits, paying special attention to degradation observed in MOS devices and circuits when they are irradiated Explains how circuits are built to deal with radiation, focusing on practical information about how they are being used, rather than mathematical details Radiation detection is critical in space applications, nuclear physics, semiconductor processing, and medical imaging, as well as security, drug development, and modern silicon processing techniques. The authors discuss new opportunities in these fields and address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches. Aimed at postgraduate researchers and practicing engineers, this book is a must for those serious about improving their understanding of electronics used in radiation detection. The information presented here can help you make optimal use of electronic detection equipment and stimulate further interest in its development, use, and benefits.
Book Synopsis Ionizing Radiation Effects and Applications by : Boualem Djezzar
Download or read book Ionizing Radiation Effects and Applications written by Boualem Djezzar and published by BoD – Books on Demand. This book was released on 2018-03-28 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The benefits of ionizing radiations have been largely demonstrated through many achievements of human life. Understanding the fundamental elementary interactions of ionizing radiations with material has allowed the development of various applications needed by different industries. This book draws some facets of their applications, such as hardening process for semiconductor devices, biomedical imaging by radiation luminescent quantum dots, hydrogen gas detection by Raman lidar sensor for explosion risk assessment, water and wastewater purification by radiation treatment for environment, doping by the neutron transmutation doping for the semiconductor industry, and polymerization by irradiation, which is useful for industries requiring resistant and protective coating. I wish the chapters of this book can provide some helpful information on ionizing radiation applications.