Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Numerical Solution Of Nonlinear Stiff Initial Value Problems
Download The Numerical Solution Of Nonlinear Stiff Initial Value Problems full books in PDF, epub, and Kindle. Read online The Numerical Solution Of Nonlinear Stiff Initial Value Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Numerical Methods for Initial Value Problems in Ordinary Differential Equations by : Simeon Ola Fatunla
Download or read book Numerical Methods for Initial Value Problems in Ordinary Differential Equations written by Simeon Ola Fatunla and published by . This book was released on 1988 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Numerical Solution of Nonlinear Stiff Initial Value Problems by : W. H. Hundsdorfer
Download or read book The Numerical Solution of Nonlinear Stiff Initial Value Problems written by W. H. Hundsdorfer and published by . This book was released on 1985 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Numerical Solution of Ordinary Differential Equations by : Kendall Atkinson
Download or read book Numerical Solution of Ordinary Differential Equations written by Kendall Atkinson and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.
Book Synopsis Numerical Solutions of Nonlinear STIFF Initial Value Problems by Perturbed Functional Iterations by :
Download or read book Numerical Solutions of Nonlinear STIFF Initial Value Problems by Perturbed Functional Iterations written by and published by . This book was released on 1982 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Numerical Solution of Nonlinear Boundary Value Problems with Applications by : Milan Kubicek
Download or read book Numerical Solution of Nonlinear Boundary Value Problems with Applications written by Milan Kubicek and published by Courier Corporation. This book was released on 2008-01-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.
Book Synopsis Numerical Analysis Using MATLAB and Spreadsheets by : Steven T. Karris
Download or read book Numerical Analysis Using MATLAB and Spreadsheets written by Steven T. Karris and published by Orchard Publications. This book was released on 2004 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation This text provides complete, clear, and detailed explanations of the principal numerical analysis methods and well known functions used in science and engineering. These are illustrated with many practical examples. With this text the reader learns numerical analysis with many real-world applications, MATLAB, and spreadsheets simultaneously. This text includes the following chapters:? Introduction to MATLAB? Root Approximations? Sinusoids and Complex Numbers? Matrices and Determinants? Review of Differential Equations? Fourier, Taylor, and Maclaurin Series? Finite Differences and Interpolation? Linear and Parabolic Regression? Solution of Differential Equations by Numerical Methods? Integration by Numerical Methods? Difference Equations? Partial Fraction Expansion? The Gamma and Beta Functions? Orthogonal Functions and Matrix Factorizations? Bessel, Legendre, and Chebyshev Polynomials? Optimization MethodsEach chapter contains numerous practical applications supplemented with detailed instructionsfor using MATLAB and/or Microsoft Excel? to obtain quick solutions.
Download or read book Haar Wavelets written by Ülo Lepik and published by Springer Science & Business Media. This book was released on 2014-01-09 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.
Book Synopsis Nonstandard Finite Difference Models of Differential Equations by : Ronald E. Mickens
Download or read book Nonstandard Finite Difference Models of Differential Equations written by Ronald E. Mickens and published by World Scientific. This book was released on 1994 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.
Author :Michael Oberguggenberger Publisher :Springer Science & Business Media ISBN 13 :0857294466 Total Pages :338 pages Book Rating :4.8/5 (572 download)
Book Synopsis Analysis for Computer Scientists by : Michael Oberguggenberger
Download or read book Analysis for Computer Scientists written by Michael Oberguggenberger and published by Springer Science & Business Media. This book was released on 2011-03-19 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents an algorithmic approach to mathematical analysis, with a focus on modelling and on the applications of analysis. Fully integrating mathematical software into the text as an important component of analysis, the book makes thorough use of examples and explanations using MATLAB, Maple, and Java applets. Mathematical theory is described alongside the basic concepts and methods of numerical analysis, supported by computer experiments and programming exercises, and an extensive use of figure illustrations. Features: thoroughly describes the essential concepts of analysis; provides summaries and exercises in each chapter, as well as computer experiments; discusses important applications and advanced topics; presents tools from vector and matrix algebra in the appendices, together with further information on continuity; includes definitions, propositions and examples throughout the text; supplementary software can be downloaded from the book’s webpage.
Book Synopsis Newton Methods for Nonlinear Problems by : Peter Deuflhard
Download or read book Newton Methods for Nonlinear Problems written by Peter Deuflhard and published by Springer Science & Business Media. This book was released on 2005-01-13 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.
Book Synopsis Solving Ordinary Differential Equations II by : Ernst Hairer
Download or read book Solving Ordinary Differential Equations II written by Ernst Hairer and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.
Book Synopsis Numerical Initial Value Problems in Ordinary Differential Equations by : Charles William Gear
Download or read book Numerical Initial Value Problems in Ordinary Differential Equations written by Charles William Gear and published by Prentice Hall. This book was released on 1971 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Higher order one-step methods -- Systems of equations and equations of order greater than one -- Convergence, error bounds, and error estimates for one-step methods -- The choice of step size and order -- Extrapolation methods -- Multivalue or multistep methods - introduction -- General multistep methods, order and stability -- Multivalue methods -- Existence, convergence, and error estimates for multivalue methods -- Special methods for special problems -- Choosing a method.
Book Synopsis Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by : Willem Hundsdorfer
Download or read book Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations written by Willem Hundsdorfer and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique book on Reaction-Advection-Diffusion problems
Book Synopsis Numerical Solution of Differential Equations by : Zhilin Li
Download or read book Numerical Solution of Differential Equations written by Zhilin Li and published by Cambridge University Press. This book was released on 2017-11-30 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.
Book Synopsis The Numerical Analysis of Ordinary Differential Equations by : J. C. Butcher
Download or read book The Numerical Analysis of Ordinary Differential Equations written by J. C. Butcher and published by . This book was released on 1987-02-24 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical and computational introduction. The Euler method and its generalizations. Analysis of Runge-Kutta methods. General linear methods.
Book Synopsis Scientific Computing with Ordinary Differential Equations by : Peter Deuflhard
Download or read book Scientific Computing with Ordinary Differential Equations written by Peter Deuflhard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well-known authors; Includes topics and results that have previously not been covered in a book; Uses many interesting examples from science and engineering; Contains numerous homework exercises; Scientific computing is a hot and topical area
Book Synopsis Introduction to Numerical Analysis by : J. Stoer
Download or read book Introduction to Numerical Analysis written by J. Stoer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.