Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Mountain Pass Theorem
Download The Mountain Pass Theorem full books in PDF, epub, and Kindle. Read online The Mountain Pass Theorem ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Mountain Pass Theorem by : Youssef Jabri
Download or read book The Mountain Pass Theorem written by Youssef Jabri and published by . This book was released on 2003 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents min-max methods through a comprehensive study of the different faces of the celebrated Mountain Pass Theorem (MPT) of Ambrosetti and Rabinowitz. The coverage includes standard topics: the classical and dual MPT; second-order information from PS sequences; symmetry and topological index theory; perturbations from symmetry; convexity and more. But it also covers other topics covered nowhere else in book form: the non-smooth MPT; the geometrically constrained MPT; numerical approaches to the MPT; and even more exotic variants.
Book Synopsis The Mountain Pass Theorem by : Youssef Jabri
Download or read book The Mountain Pass Theorem written by Youssef Jabri and published by Cambridge University Press. This book was released on 2003-09-15 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Joussef Jabri presents min-max methods through a comprehensive study of the different faces of the celebrated Mountain Pass Theorem (MPT) of Ambrosetti and Rabinowitz. Jabri clarifies the extensions and variants of the MPT in a complete and unified way and covers standard topics: the classical and dual MPT; second-order information from PS sequences; symmetry and topological index theory; perturbations from symmetry; convexity and more. He also covers the non-smooth MPT; the geometrically constrained MPT; numerical approaches to the MPT; and even more exotic variants. A bibliography and detailed index are also included.
Book Synopsis The Mountain Pass Theorem by : Youssef Jabri
Download or read book The Mountain Pass Theorem written by Youssef Jabri and published by Cambridge University Press. This book was released on 2003-09-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Joussef Jabri presents min-max methods through a comprehensive study of the different faces of the celebrated Mountain Pass Theorem (MPT) of Ambrosetti and Rabinowitz. Jabri clarifies the extensions and variants of the MPT in a complete and unified way and covers standard topics: the classical and dual MPT; second-order information from PS sequences; symmetry and topological index theory; perturbations from symmetry; convexity and more. He also covers the non-smooth MPT; the geometrically constrained MPT; numerical approaches to the MPT; and even more exotic variants. A bibliography and detailed index are also included.
Book Synopsis Minimax Methods in Critical Point Theory with Applications to Differential Equations by : Paul H. Rabinowitz
Download or read book Minimax Methods in Critical Point Theory with Applications to Differential Equations written by Paul H. Rabinowitz and published by American Mathematical Soc.. This book was released on 1986-07-01 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.
Book Synopsis The Mountain Pass Theorem by : Youssef Jabri
Download or read book The Mountain Pass Theorem written by Youssef Jabri and published by Cambridge University Press. This book was released on 2003-09-15 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2003 book presents min-max methods through a study of the different faces of the celebrated Mountain Pass Theorem (MPT) of Ambrosetti and Rabinowitz. The reader is led from the most accessible results to the forefront of the theory, and at each step in this walk between the hills, the author presents the extensions and variants of the MPT in a complete and unified way. Coverage includes standard topics, but it also covers other topics covered nowhere else in book form: the non-smooth MPT; the geometrically constrained MPT; numerical approaches to the MPT; and even more exotic variants. Each chapter has a section with supplementary comments and bibliographical notes, and there is a rich bibliography and a detailed index to aid the reader. The book is suitable for researchers and graduate students. Nevertheless, the style and the choice of the material make it accessible to all newcomers to the field.
Book Synopsis Linking Methods in Critical Point Theory by : Martin Schechter
Download or read book Linking Methods in Critical Point Theory written by Martin Schechter and published by Springer Science & Business Media. This book was released on 1999-07-01 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: As is well known, The Great Divide (a.k.a. The Continental Divide) is formed by the Rocky Mountains stretching from north to south across North America. It creates a virtual "stone wall" so high that wind, rain, snow, etc. cannot cross it. This keeps the weather distinct on both sides. Since railroad trains cannot climb steep grades and tunnels through these mountains are almost formidable, the Canadian Pacific Railroad searched for a mountain pass providing the lowest grade for its tracks. Employees discovered a suitable mountain pass, called the Kicking Horse Pass, el. 5404 ft., near Banff, Alberta. (One can speculate as to the reason for the name.) This pass is also used by the Trans-Canada Highway. At the highest point of the pass the railroad tracks are horizontal with mountains rising on both sides. A mountain stream divides into two branches, one flowing into the Atlantic Ocean and the other into the Pacific. One can literally stand (as the author did) with one foot in the Atlantic Ocean and the other in the Pacific. The author has observed many mountain passes in the Rocky Mountains and Alps. What connections do mountain passes have with nonlinear partial dif ferential equations? To find out, read on ...
Book Synopsis Nonlinear Analysis - Theory and Methods by : Nikolaos S. Papageorgiou
Download or read book Nonlinear Analysis - Theory and Methods written by Nikolaos S. Papageorgiou and published by Springer. This book was released on 2019-02-26 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
Download or read book Minimax Theorems written by Michel Willem and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many boundary value problems are equivalent to Au=O (1) where A : X --+ Y is a mapping between two Banach spaces. When the problem is variational, there exists a differentiable functional rand inf.
Book Synopsis Critical Point Theory and Hamiltonian Systems by : Jean Mawhin
Download or read book Critical Point Theory and Hamiltonian Systems written by Jean Mawhin and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN
Book Synopsis The Calculus of Variations in the Large by : Marston Morse
Download or read book The Calculus of Variations in the Large written by Marston Morse and published by American Mathematical Soc.. This book was released on 1934-12-31 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Morse theory is a study of deep connections between analysis and topology. In its classical form, it provides a relationship between the critical points of certain smooth functions on a manifold and the topology of the manifold. It has been used by geometers, topologists, physicists, and others as a remarkably effective tool to study manifolds. In the 1980s and 1990s, Morse theory was extended to infinite dimensions with great success. This book is Morse's own exposition of his ideas. It has been called one of the most important and influential mathematical works of the twentieth century. Calculus of Variations in the Large is certainly one of the essential references on Morse theory.
Book Synopsis An Invitation to Morse Theory by : Liviu Nicolaescu
Download or read book An Invitation to Morse Theory written by Liviu Nicolaescu and published by Springer Science & Business Media. This book was released on 2011-12-02 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.
Book Synopsis Methods in Nonlinear Integral Equations by : R Precup
Download or read book Methods in Nonlinear Integral Equations written by R Precup and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.
Book Synopsis Applied Functional Analysis by : Eberhard Zeidler
Download or read book Applied Functional Analysis written by Eberhard Zeidler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.
Book Synopsis Symmetry and Perturbation Theory by : Simonetta Abenda
Download or read book Symmetry and Perturbation Theory written by Simonetta Abenda and published by World Scientific. This book was released on 2002 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the fourth conference on OC Supersymmetry and Perturbation TheoryOCO (SPT 2002). The proceedings present original results and state-of-the-art reviews on topics related to symmetry, integrability and perturbation theory, etc. Contents: An Outline of the Geometrical Theory of the Separation of Variables in the Hamilton-Jacobi and SchrAdinger Equations (S Benenti); Partial Symmetries and Symmetric Sets of Solutions to PDE's (G Cicogna); On the Algebro-Geometric Solution of 3 x 3 Matrix Riemann-Hilbert Problem (V Enolski & T Grava); Bifurcations in Flow-Induced Vibration (S Fatimah & F Verhulst); Steklov-Lyapunov Type Systems (Yu N Fedorov); Renormalization Group and Summation of Divergent Series for Hyperbolic Invariant Tori (G Gentile); On the Linearization of Holomorphic Vector Fields in the Siegel Domain with Linear Parts Having Nontrivial Jordan Blocks (T Gramchev); Smooth Normalization of a Vector Field Near an Invariant Manifold (A Kopanskii); Inverse Problems for SL (2) Lattices (V B Kuznetsov); Some Remarks about the Geometry of Hamiltonian Conservation Laws (J-P Ortega); Janet's Algorithm (W Plesken); Some Integrable Billiards (E Previato); Symmetries of Relative Equilibria for Simple Mechanical Systems (M Rodr guez-Olmos & M E Sousa Dias); A Spectral Sequences Approach to Normal Forms (J A Sanders); Rational Parametrization of Strata in Orbit Spaces of Compact Linear Groups (G Sartori & G Valente); Effective Hamiltonians and Perturbation Theory for Quantum Bound States of Nuclear Motion in Molecules (V G Tyuterev); Generalized Hasimoto Transformation and Vector Sine-Gordon Equation (J P Wang); and other papers. Readership: Researchers and graduate students in mathematical and theoretical physics, and nonlinear science."
Book Synopsis Variational Methods for Potential Operator Equations by : Jan H. Chabrowski
Download or read book Variational Methods for Potential Operator Equations written by Jan H. Chabrowski and published by Walter de Gruyter. This book was released on 2011-06-24 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
Book Synopsis Large Deviations for Stochastic Processes by : Jin Feng
Download or read book Large Deviations for Stochastic Processes written by Jin Feng and published by American Mathematical Soc.. This book was released on 2006 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming's logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are de
Book Synopsis Topological Methods in Differential Equations and Inclusions by : Andrzej Granas
Download or read book Topological Methods in Differential Equations and Inclusions written by Andrzej Granas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers collected in this volume are contributions to the 33rd session of the Seminaire de Mathematiques Superieures (SMS) on "Topological Methods in Differential Equations and Inclusions". This session of the SMS took place at the Universite de Montreal in July 1994 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together a considerable group of young researchers from various parts of the world and to present to them coherent surveys of some of the most recent advances in this area of Nonlinear Analysis. During the meeting 89 mathematicians from 20 countries have had the opportunity to get acquainted with various aspects of the subjects treated in the lectures as well as the chance to exchange ideas and learn about new problems arising in the field. The main topics teated in this ASI were the following: Fixed point theory for single- and multi-valued mappings including topological degree and its generalizations, and topological transversality theory; existence and multiplicity results for ordinary differential equations and inclusions; bifurcation and stability problems; ordinary differential equations in Banach spaces; second order differential equations on manifolds; the topological structure of the solution set of differential inclusions; effects of delay perturbations on dynamics of retarded delay differential equations; dynamics of reaction diffusion equations; non smooth critical point theory and applications to boundary value problems for quasilinear elliptic equations.