Digital Signal Processing with Matlab Examples, Volume 2

Download Digital Signal Processing with Matlab Examples, Volume 2 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811025371
Total Pages : 944 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Digital Signal Processing with Matlab Examples, Volume 2 by : Jose Maria Giron-Sierra

Download or read book Digital Signal Processing with Matlab Examples, Volume 2 written by Jose Maria Giron-Sierra and published by Springer. This book was released on 2016-12-02 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This second book focuses on recent developments in response to the demands of new digital technologies. It is divided into two parts: the first part includes four chapters on the decomposition and recovery of signals, with special emphasis on images. In turn, the second part includes three chapters and addresses important data-based actions, such as adaptive filtering, experimental modeling, and classification.

Encyclopedia of Mathematical Geosciences

Download Encyclopedia of Mathematical Geosciences PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030850404
Total Pages : 1744 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Mathematical Geosciences by : B. S. Daya Sagar

Download or read book Encyclopedia of Mathematical Geosciences written by B. S. Daya Sagar and published by Springer Nature. This book was released on 2023-07-13 with total page 1744 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.

Mixture Models

Download Mixture Models PDF Online Free

Author :
Publisher : IMS
ISBN 13 : 9780940600324
Total Pages : 184 pages
Book Rating : 4.6/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Mixture Models by : Bruce G. Lindsay

Download or read book Mixture Models written by Bruce G. Lindsay and published by IMS. This book was released on 1995 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Handbook of Mixture Analysis

Download Handbook of Mixture Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429508867
Total Pages : 489 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mixture Analysis by : Sylvia Fruhwirth-Schnatter

Download or read book Handbook of Mixture Analysis written by Sylvia Fruhwirth-Schnatter and published by CRC Press. This book was released on 2019-01-04 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features: Provides a comprehensive overview of the methods and applications of mixture modelling and analysis Divided into three parts: Foundations and Methods; Mixture Modelling and Extensions; and Selected Applications Contains many worked examples using real data, together with computational implementation, to illustrate the methods described Includes contributions from the leading researchers in the field The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems.

Bayesian Filtering and Smoothing

Download Bayesian Filtering and Smoothing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110703065X
Total Pages : 255 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Filtering and Smoothing by : Simo Särkkä

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Download Accelerating Monte Carlo methods for Bayesian inference in dynamical models PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9176857972
Total Pages : 139 pages
Book Rating : 4.1/5 (768 download)

DOWNLOAD NOW!


Book Synopsis Accelerating Monte Carlo methods for Bayesian inference in dynamical models by : Johan Dahlin

Download or read book Accelerating Monte Carlo methods for Bayesian inference in dynamical models written by Johan Dahlin and published by Linköping University Electronic Press. This book was released on 2016-03-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.

Inference in Hidden Markov Models

Download Inference in Hidden Markov Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387289828
Total Pages : 656 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Inference in Hidden Markov Models by : Olivier Cappé

Download or read book Inference in Hidden Markov Models written by Olivier Cappé and published by Springer Science & Business Media. This book was released on 2006-04-12 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

Algorithms for Decision Making

Download Algorithms for Decision Making PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262047012
Total Pages : 701 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Decision Making by : Mykel J. Kochenderfer

Download or read book Algorithms for Decision Making written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2022-08-16 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.

Applied Stochastic Differential Equations

Download Applied Stochastic Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316510085
Total Pages : 327 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors

Download Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303065771X
Total Pages : 208 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors by : Rudolf Frühwirth

Download or read book Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors written by Rudolf Frühwirth and published by Springer Nature. This book was released on 2021 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is a comprehensive review of the methods and algorithms that are used in the reconstruction of events recorded by past, running and planned experiments at particle accelerators such as the LHC, SuperKEKB and FAIR. The main topics are pattern recognition for track and vertex finding, solving the equations of motion by analytical or numerical methods, treatment of material effects such as multiple Coulomb scattering and energy loss, and the estimation of track and vertex parameters by statistical algorithms. The material covers both established methods and recent developments in these fields and illustrates them by outlining exemplary solutions developed by selected experiments. The clear presentation enables readers to easily implement the material in a high-level programming language. It also highlights software solutions that are in the public domain whenever possible. It is a valuable resource for PhD students and researchers working on online or offline reconstruction for their experiments.

Finite Mixture and Markov Switching Models

Download Finite Mixture and Markov Switching Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387357688
Total Pages : 506 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Finite Mixture and Markov Switching Models by : Sylvia Frühwirth-Schnatter

Download or read book Finite Mixture and Markov Switching Models written by Sylvia Frühwirth-Schnatter and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.

Gaussian Processes for Machine Learning

Download Gaussian Processes for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026218253X
Total Pages : 266 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen

Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Nonlinear Models for Repeated Measurement Data

Download Nonlinear Models for Repeated Measurement Data PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351428152
Total Pages : 360 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Models for Repeated Measurement Data by : Marie Davidian

Download or read book Nonlinear Models for Repeated Measurement Data written by Marie Davidian and published by Routledge. This book was released on 2017-11-01 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.

The EM Algorithm and Extensions

Download The EM Algorithm and Extensions PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470191600
Total Pages : 399 pages
Book Rating : 4.4/5 (71 download)

DOWNLOAD NOW!


Book Synopsis The EM Algorithm and Extensions by : Geoffrey J. McLachlan

Download or read book The EM Algorithm and Extensions written by Geoffrey J. McLachlan and published by John Wiley & Sons. This book was released on 2007-11-09 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented. While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include: New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm New results on convergence, including convergence of the EM algorithm in constrained parameter spaces Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.

Bayesian Nonparametrics

Download Bayesian Nonparametrics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139484605
Total Pages : 309 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nonparametrics by : Nils Lid Hjort

Download or read book Bayesian Nonparametrics written by Nils Lid Hjort and published by Cambridge University Press. This book was released on 2010-04-12 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.

Finite Mixture Distributions

Download Finite Mixture Distributions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400958978
Total Pages : 148 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Finite Mixture Distributions by : B. Everitt

Download or read book Finite Mixture Distributions written by B. Everitt and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite mixture distributions arise in a variety of applications ranging from the length distribution of fish to the content of DNA in the nuclei of liver cells. The literature surrounding them is large and goes back to the end of the last century when Karl Pearson published his well-known paper on estimating the five parameters in a mixture of two normal distributions. In this text we attempt to review this literature and in addition indicate the practical details of fitting such distributions to sample data. Our hope is that the monograph will be useful to statisticians interested in mixture distributions and to re search workers in other areas applying such distributions to their data. We would like to express our gratitude to Mrs Bertha Lakey for typing the manuscript. Institute oj Psychiatry B. S. Everitt University of London D. l Hand 1980 CHAPTER I General introduction 1. 1 Introduction This monograph is concerned with statistical distributions which can be expressed as superpositions of (usually simpler) component distributions. Such superpositions are termed mixture distributions or compound distributions. For example, the distribution of height in a population of children might be expressed as follows: h(height) = fg(height: age)f(age)d age (1. 1) where g(height: age) is the conditional distribution of height on age, and/(age) is the age distribution of the children in the population.

Statistical and Inductive Inference by Minimum Message Length

Download Statistical and Inductive Inference by Minimum Message Length PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387237954
Total Pages : 456 pages
Book Rating : 4.2/5 (379 download)

DOWNLOAD NOW!


Book Synopsis Statistical and Inductive Inference by Minimum Message Length by : C.S. Wallace

Download or read book Statistical and Inductive Inference by Minimum Message Length written by C.S. Wallace and published by Springer Science & Business Media. This book was released on 2005-05-26 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.