Author : Manuel Domínguez de la Iglesia
Publisher : Cambridge University Press
ISBN 13 : 1009035207
Total Pages : 348 pages
Book Rating : 4.0/5 (9 download)
Book Synopsis Orthogonal Polynomials in the Spectral Analysis of Markov Processes by : Manuel Domínguez de la Iglesia
Download or read book Orthogonal Polynomials in the Spectral Analysis of Markov Processes written by Manuel Domínguez de la Iglesia and published by Cambridge University Press. This book was released on 2021-10-21 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: In pioneering work in the 1950s, S. Karlin and J. McGregor showed that probabilistic aspects of certain Markov processes can be studied by analyzing orthogonal eigenfunctions of associated operators. In the decades since, many authors have extended and deepened this surprising connection between orthogonal polynomials and stochastic processes. This book gives a comprehensive analysis of the spectral representation of the most important one-dimensional Markov processes, namely discrete-time birth-death chains, birth-death processes and diffusion processes. It brings together the main results from the extensive literature on the topic with detailed examples and applications. Also featuring an introduction to the basic theory of orthogonal polynomials and a selection of exercises at the end of each chapter, it is suitable for graduate students with a solid background in stochastic processes as well as researchers in orthogonal polynomials and special functions who want to learn about applications of their work to probability.