Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Tensor Numerical Methods In Scientific Computing
Download Tensor Numerical Methods In Scientific Computing full books in PDF, epub, and Kindle. Read online Tensor Numerical Methods In Scientific Computing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Tensor Numerical Methods in Scientific Computing by : Boris N. Khoromskij
Download or read book Tensor Numerical Methods in Scientific Computing written by Boris N. Khoromskij and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-06-11 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green’s and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations
Book Synopsis Tensor Numerical Methods in Quantum Chemistry by : Venera Khoromskaia
Download or read book Tensor Numerical Methods in Quantum Chemistry written by Venera Khoromskaia and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-06-11 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conventional numerical methods when applied to multidimensional problems suffer from the so-called "curse of dimensionality", that cannot be eliminated by using parallel architectures and high performance computing. The novel tensor numerical methods are based on a "smart" rank-structured tensor representation of the multivariate functions and operators discretized on Cartesian grids thus reducing solution of the multidimensional integral-differential equations to 1D calculations. We explain basic tensor formats and algorithms and show how the orthogonal Tucker tensor decomposition originating from chemometrics made a revolution in numerical analysis, relying on rigorous results from approximation theory. Benefits of tensor approach are demonstrated in ab-initio electronic structure calculations. Computation of the 3D convolution integrals for functions with multiple singularities is replaced by a sequence of 1D operations, thus enabling accurate MATLAB calculations on a laptop using 3D uniform tensor grids of the size up to 1015. Fast tensor-based Hartree-Fock solver, incorporating the grid-based low-rank factorization of the two-electron integrals, serves as a prerequisite for economical calculation of the excitation energies of molecules. Tensor approach suggests efficient grid-based numerical treatment of the long-range electrostatic potentials on large 3D finite lattices with defects.The novel range-separated tensor format applies to interaction potentials of multi-particle systems of general type opening the new prospects for tensor methods in scientific computing. This research monograph presenting the modern tensor techniques applied to problems in quantum chemistry may be interesting for a wide audience of students and scientists working in computational chemistry, material science and scientific computing.
Book Synopsis High-Performance Tensor Computations in Scientific Computing and Data Science by : Edoardo Angelo Di Napoli
Download or read book High-Performance Tensor Computations in Scientific Computing and Data Science written by Edoardo Angelo Di Napoli and published by Frontiers Media SA. This book was released on 2022-11-08 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Numerical Methods in Scientific Computing by : Germund Dahlquist
Download or read book Numerical Methods in Scientific Computing written by Germund Dahlquist and published by SIAM. This book was released on 2008-01-01 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.
Book Synopsis Python Programming and Numerical Methods by : Qingkai Kong
Download or read book Python Programming and Numerical Methods written by Qingkai Kong and published by Academic Press. This book was released on 2020-11-27 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online
Book Synopsis Introduction to Scientific Computing and Data Analysis by : Mark H. Holmes
Download or read book Introduction to Scientific Computing and Data Analysis written by Mark H. Holmes and published by Springer Nature. This book was released on 2023-07-11 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides an introduction to numerical computing and its applications in science and engineering. The topics covered include those usually found in an introductory course, as well as those that arise in data analysis. This includes optimization and regression-based methods using a singular value decomposition. The emphasis is on problem solving, and there are numerous exercises throughout the text concerning applications in engineering and science. The essential role of the mathematical theory underlying the methods is also considered, both for understanding how the method works, as well as how the error in the computation depends on the method being used. The codes used for most of the computational examples in the text are available on GitHub. This new edition includes material necessary for an upper division course in computational linear algebra.
Book Synopsis Numerical Methods in Matrix Computations by : Åke Björck
Download or read book Numerical Methods in Matrix Computations written by Åke Björck and published by Springer. This book was released on 2014-10-07 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work.
Book Synopsis Numerical Algorithms by : Justin Solomon
Download or read book Numerical Algorithms written by Justin Solomon and published by CRC Press. This book was released on 2015-06-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Book Synopsis The Finite Element Method: Theory, Implementation, and Applications by : Mats G. Larson
Download or read book The Finite Element Method: Theory, Implementation, and Applications written by Mats G. Larson and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.
Book Synopsis Tensor Spaces and Numerical Tensor Calculus by : Wolfgang Hackbusch
Download or read book Tensor Spaces and Numerical Tensor Calculus written by Wolfgang Hackbusch and published by Springer Nature. This book was released on 2019-12-16 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.
Book Synopsis Numerical Methods for Least Squares Problems by : Ake Bjorck
Download or read book Numerical Methods for Least Squares Problems written by Ake Bjorck and published by SIAM. This book was released on 1996-01-01 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.
Book Synopsis Matrix Methods in Data Mining and Pattern Recognition by : Lars Elden
Download or read book Matrix Methods in Data Mining and Pattern Recognition written by Lars Elden and published by SIAM. This book was released on 2007-07-12 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.
Author :Hans Petter Langtangen Publisher :Springer Science & Business Media ISBN 13 :3662011700 Total Pages :704 pages Book Rating :4.6/5 (62 download)
Book Synopsis Computational Partial Differential Equations by : Hans Petter Langtangen
Download or read book Computational Partial Differential Equations written by Hans Petter Langtangen and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.
Book Synopsis Model Reduction and Approximation by : Peter Benner
Download or read book Model Reduction and Approximation written by Peter Benner and published by SIAM. This book was released on 2017-07-06 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.
Book Synopsis An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases by : Francis X. Giraldo
Download or read book An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases written by Francis X. Giraldo and published by Springer. This book was released on 2021-11-01 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations.
Author :Christoph W. Ueberhuber Publisher :Springer Science & Business Media ISBN 13 :3642591183 Total Pages :494 pages Book Rating :4.6/5 (425 download)
Book Synopsis Numerical Computation 1 by : Christoph W. Ueberhuber
Download or read book Numerical Computation 1 written by Christoph W. Ueberhuber and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with various aspects of scientific numerical computing. No at tempt was made to be complete or encyclopedic. The successful solution of a numerical problem has many facets and consequently involves different fields of computer science. Computer numerics- as opposed to computer algebra- is thus based on applied mathematics, numerical analysis and numerical computation as well as on certain areas of computer science such as computer architecture and operating systems. Applied Mathemalies I I I Numerical Analysis Analysis, Algebra I I Numerical Computation Symbolic Computation I Operating Systems Computer Hardware Each chapter begins with sample situations taken from specific fields of appli cation. Abstract and general formulations of mathematical problems are then presented. Following this abstract level, a general discussion about principles and methods for the numerical solution of mathematical problems is presented. Relevant algorithms are developed and their efficiency and the accuracy of their results is assessed. It is then explained as to how they can be obtained in the form of numerical software. The reader is presented with various ways of applying the general methods and principles to particular classes of problems and approaches to extracting practically useful solutions with appropriately chosen numerical software are developed. Potential difficulties and obstacles are examined, and ways of avoiding them are discussed. The volume and diversity of all the available numerical software is tremendous.
Book Synopsis Spectral Methods by : Claudio Canuto
Download or read book Spectral Methods written by Claudio Canuto and published by Springer Science & Business Media. This book was released on 2007-09-23 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of "Spectral Methods in Fluid Dynamics" 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded.