Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Survivorship Analysis For Clinical Studies
Download Survivorship Analysis For Clinical Studies full books in PDF, epub, and Kindle. Read online Survivorship Analysis For Clinical Studies ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Analysing Survival Data from Clinical Trials and Observational Studies by : Ettore Marubini
Download or read book Analysing Survival Data from Clinical Trials and Observational Studies written by Ettore Marubini and published by John Wiley & Sons. This book was released on 2004-07-02 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to methods of survival analysis for medical researchers with limited statistical experience. Methods and techniques described range from descriptive and exploratory analysis to multivariate regression methods. Uses illustrative data from actual clinical trials and observational studies to describe methods of analysing and reporting results. Also reviews the features and performance of statistical software available for applying the methods of analysis discussed.
Book Synopsis Survival Analysis in Medicine and Genetics by : Jialiang Li
Download or read book Survival Analysis in Medicine and Genetics written by Jialiang Li and published by CRC Press. This book was released on 2013-06-04 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using real data sets throughout, this text introduces the latest methods for analyzing high-dimensional survival data. With an emphasis on the applications of survival analysis techniques in genetics, it presents a statistical framework for burgeoning research in this area and offers a set of established approaches for statistical analysis. The book reveals a new way of looking at how predictors are associated with censored survival time and extracts novel statistical genetic methods for censored survival time outcome from the vast amount of research results in genomics.
Book Synopsis Clinical Statistics: Introducing Clinical Trials, Survival Analysis, and Longitudinal Data Analysis by : Olga Korosteleva
Download or read book Clinical Statistics: Introducing Clinical Trials, Survival Analysis, and Longitudinal Data Analysis written by Olga Korosteleva and published by Jones & Bartlett Learning. This book was released on 2009 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clinical Statistics: Introducing Clinical Trials, Survival Analysis, and Longitudinal Data Analysis provides the mathematic background necessary for students preparing for a career as a statistician in the biomedical field. The manual explains the steps a clinical statistician must take in clinical trials from protocol writing to subject randomization, to data monitoring, and on to writing a final report to the FDA. All of the necessary fundamentals of statistical analysis: survival and longitudinal data analysis are included. SAS procedures are explained with simple examples and the mathematics behind these SAS procedures are covered in detail with the statistical software program SAS which is implemented throughout the text. Complete codes are given for every example found in the text. The exercises featured throughout the guide are both theoretical and applied making it appropriate for those moving on to different clinical settings. Students will find Clinical Statistics to be a handy lab reference for coursework and in their future careers.
Book Synopsis Survival Analysis by : David G. Kleinbaum
Download or read book Survival Analysis written by David G. Kleinbaum and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightforward and easy-to-follow introduction to the main concepts and techniques of the subject. It is based on numerous courses given by the author to students and researchers in the health sciences and is written with such readers in mind. A "user-friendly" layout includes numerous illustrations and exercises and the book is written in such a way so as to enable readers learn directly without the assistance of a classroom instructor. Throughout, there is an emphasis on presenting each new topic backed by real examples of a survival analysis investigation, followed up with thorough analyses of real data sets. Each chapter concludes with practice exercises to help readers reinforce their understanding of the concepts covered, before going on to a more comprehensive test. Answers to both are included. Readers will enjoy David Kleinbaums style of presentation, making this an excellent introduction for all those coming to the subject for the first time.
Book Synopsis Handbook of Survival Analysis by : John P. Klein
Download or read book Handbook of Survival Analysis written by John P. Klein and published by CRC Press. This book was released on 2016-04-19 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians
Book Synopsis Analysis of Survival Data by : D.R. Cox
Download or read book Analysis of Survival Data written by D.R. Cox and published by CRC Press. This book was released on 1984-06-01 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph contains many ideas on the analysis of survival data to present a comprehensive account of the field. The value of survival analysis is not confined to medical statistics, where the benefit of the analysis of data on such factors as life expectancy and duration of periods of freedom from symptoms of a disease as related to a treatment applied individual histories and so on, is obvious. The techniques also find important applications in industrial life testing and a range of subjects from physics to econometrics. In the eleven chapters of the book the methods and applications of are discussed and illustrated by examples.
Book Synopsis SAS Survival Analysis Techniques for Medical Research by : Alan B. Cantor
Download or read book SAS Survival Analysis Techniques for Medical Research written by Alan B. Cantor and published by SAS Press. This book was released on 2003 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are new to survival analysis or want to expand your capabilities in this area, you'll benefit from Alan Cantor's SAS Survival Analysis Techniques for Medical Research, Second Edition, which presents the theory and methods of survival analysis along with excellent discussions of the SAS procedures used to implement the methods described. New features of the second edition include a discussion of permutation and randomization tests; a discussion of the use of data imputation; an expanded discussion of power for Cox regression; descriptions of the new features of SAS 9, such as confidence bands for the Kaplan-Meier curve; appendixes that cover mathematical and statistical background topics needed in survival analysis; and student exercises. The new features, along with several useful macros and numerous examples, make this a suitable textbook for a course in survival analysis for biostatistics majors and majors in related fields. This book excels at presenting complex ideas in a way that enables those without a strong technical background to understand and apply the concepts and techniques.
Book Synopsis Modelling Survival Data in Medical Research by : David Collett
Download or read book Modelling Survival Data in Medical Research written by David Collett and published by . This book was released on 1993 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data collected on the time to an event-such as the death of a patient in a medical study-is known as survival data. The methods for analyzing survival data can also be used to analyze data on the time to events such as the recurrence of a disease or relief from symptoms. Modelling Survival Data in Medical Research begins with an introduction to survival analysis and a description of four studies in which survival data was obtained. These and other data sets are then used to illustrate the techniques presented in the following chapters, including the Cox and Weibull proportional hazards models; accelerated failure time models; models with time-dependent variables; interval-censored survival data; model checking; and use of statistical packages. Designed for statisticians in the pharmaceutical industry and medical research institutes, and for numerate scientists and clinicians analyzing their own data sets, this book also meets the need for an intermediate text which emphasizes the application of the methodology to survival data arising from medical studies.
Book Synopsis Applied Survival Analysis Using R by : Dirk F. Moore
Download or read book Applied Survival Analysis Using R written by Dirk F. Moore and published by Springer. This book was released on 2016-05-11 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics near the end and in the appendices. A background in basic linear regression and categorical data analysis, as well as a basic knowledge of calculus and the R system, will help the reader to fully appreciate the information presented. Examples are simple and straightforward while still illustrating key points, shedding light on the application of survival analysis in a way that is useful for graduate students, researchers, and practitioners in biostatistics.
Book Synopsis Survival Analysis with Correlated Endpoints by : Takeshi Emura
Download or read book Survival Analysis with Correlated Endpoints written by Takeshi Emura and published by Springer. This book was released on 2019-03-25 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors’ original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.
Book Synopsis Bayesian Survival Analysis by : Joseph G. Ibrahim
Download or read book Bayesian Survival Analysis written by Joseph G. Ibrahim and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.
Book Synopsis Frailty Models in Survival Analysis by : Andreas Wienke
Download or read book Frailty Models in Survival Analysis written by Andreas Wienke and published by CRC Press. This book was released on 2010-07-26 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of frailty offers a convenient way to introduce unobserved heterogeneity and associations into models for survival data. In its simplest form, frailty is an unobserved random proportionality factor that modifies the hazard function of an individual or a group of related individuals. Frailty Models in Survival Analysis presents a comprehensive overview of the fundamental approaches in the area of frailty models. The book extensively explores how univariate frailty models can represent unobserved heterogeneity. It also emphasizes correlated frailty models as extensions of univariate and shared frailty models. The author analyzes similarities and differences between frailty and copula models; discusses problems related to frailty models, such as tests for homogeneity; and describes parametric and semiparametric models using both frequentist and Bayesian approaches. He also shows how to apply the models to real data using the statistical packages of R, SAS, and Stata. The appendix provides the technical mathematical results used throughout. Written in nontechnical terms accessible to nonspecialists, this book explains the basic ideas in frailty modeling and statistical techniques, with a focus on real-world data application and interpretation of the results. By applying several models to the same data, it allows for the comparison of their advantages and limitations under varying model assumptions. The book also employs simulations to analyze the finite sample size performance of the models.
Download or read book Survival Analysis written by David Machin and published by John Wiley & Sons. This book was released on 2006-03-30 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well received in its first edition, Survival Analysis: A Practical Approach is completely revised to provide an accessible and practical guide to survival analysis techniques in diverse environments. Illustrated with many authentic examples, the book introduces basic statistical concepts and methods to construct survival curves, later developing them to encompass more specialised and complex models. During the years since the first edition there have been several new topics that have come to the fore and many new applications. Parallel developments in computer software programmes, used to implement these methodologies, are relied upon throughout the text to bring it up to date.
Book Synopsis Small Clinical Trials by : Institute of Medicine
Download or read book Small Clinical Trials written by Institute of Medicine and published by National Academies Press. This book was released on 2001-01-01 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
Book Synopsis Statistical Aspects Of The Design And Analysis Of Clinical Trials (Revised Edition) by : Brian S Everitt
Download or read book Statistical Aspects Of The Design And Analysis Of Clinical Trials (Revised Edition) written by Brian S Everitt and published by World Scientific. This book was released on 2004-02-26 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully updated, this revised edition describes the statistical aspects of both the design and analysis of trials, with particular emphasis on the more recent methods of analysis.About 8000 clinical trials are undertaken annually in all areas of medicine, from the treatment of acne to the prevention of cancer. Correct interpretation of the data from such trials depends largely on adequate design and on performing the appropriate statistical analyses. This book provides a useful guide to medical statisticians and others faced with the often difficult problems of designing and analysing clinical trials./a
Book Synopsis Statistical Methods for Survival Trial Design by : Jianrong Wu
Download or read book Statistical Methods for Survival Trial Design written by Jianrong Wu and published by CRC Press. This book was released on 2018-06-14 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Methods for Survival Trial Design: With Applications to Cancer Clinical Trials Using R provides a thorough presentation of the principles of designing and monitoring cancer clinical trials in which time-to-event is the primary endpoint. Traditional cancer trial designs with time-to-event endpoints are often limited to the exponential model or proportional hazards model. In practice, however, those model assumptions may not be satisfied for long-term survival trials. This book is the first to cover comprehensively the many newly developed methodologies for survival trial design, including trial design under the Weibull survival models; extensions of the sample size calculations under the proportional hazard models; and trial design under mixture cure models, complex survival models, Cox regression models, and competing-risk models. A general sequential procedure based on the sequential conditional probability ratio test is also implemented for survival trial monitoring. All methodologies are presented with sufficient detail for interested researchers or graduate students.
Book Synopsis Survival Analysis for Epidemiologic and Medical Research by : Steve Selvin
Download or read book Survival Analysis for Epidemiologic and Medical Research written by Steve Selvin and published by Cambridge University Press. This book was released on 2008-03-03 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide to survival data and its analysis for readers with a minimal background in statistics shows why the analytic methods work and how to effectively analyze and interpret epidemiologic and medical survival data with the help of modern computer systems. The introduction presents a review of a variety of statistical methods that are not only key elements of survival analysis but are also central to statistical analysis in general. Techniques such as statistical tests, transformations, confidence intervals, and analytic modeling are presented in the context of survival data but are, in fact, statistical tools that apply to understanding the analysis of many kinds of data. Similarly, discussions of such statistical concepts as bias, confounding, independence, and interaction are presented in the context of survival analysis and also are basic components of a broad range of applications. These topics make up essentially a 'second-year', one-semester biostatistics course in survival analysis concepts and techniques for non-statisticians.