Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Stochastic Methods For Uncertainty Quantification In Radiation Transport
Download Stochastic Methods For Uncertainty Quantification In Radiation Transport full books in PDF, epub, and Kindle. Read online Stochastic Methods For Uncertainty Quantification In Radiation Transport ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Handbook of Nuclear Engineering by : Dan Gabriel Cacuci
Download or read book Handbook of Nuclear Engineering written by Dan Gabriel Cacuci and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 3701 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.
Book Synopsis Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan by : Josef Dick
Download or read book Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan written by Josef Dick and published by Springer. This book was released on 2018-05-23 with total page 1330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tribute to Professor Ian Hugh Sloan on the occasion of his 80th birthday. It consists of nearly 60 articles written by international leaders in a diverse range of areas in contemporary computational mathematics. These papers highlight the impact and many achievements of Professor Sloan in his distinguished academic career. The book also presents state of the art knowledge in many computational fields such as quasi-Monte Carlo and Monte Carlo methods for multivariate integration, multi-level methods, finite element methods, uncertainty quantification, spherical designs and integration on the sphere, approximation and interpolation of multivariate functions, oscillatory integrals, and in general in information-based complexity and tractability, as well as in a range of other topics. The book also tells the life story of the renowned mathematician, family man, colleague and friend, who has been an inspiration to many of us. The reader may especially enjoy the story from the perspective of his family, his wife, his daughter and son, as well as grandchildren, who share their views of Ian. The clear message of the book is that Ian H. Sloan has been a role model in science and life.
Book Synopsis Handbook of Uncertainty Quantification by : Roger Ghanem
Download or read book Handbook of Uncertainty Quantification written by Roger Ghanem and published by Springer. This book was released on 2016-05-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.
Book Synopsis Deterministic and Stochastic Modeling in Computational Electromagnetics by : Dragan Poljak
Download or read book Deterministic and Stochastic Modeling in Computational Electromagnetics written by Dragan Poljak and published by John Wiley & Sons. This book was released on 2023-12-07 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deterministic and Stochastic Modeling in Computational Electromagnetics Help protect your network with this important reference work on cyber security Deterministic computational models are those for which all inputs are precisely known, whereas stochastic modeling reflects uncertainty or randomness in one or more of the data inputs. Many problems in computational engineering therefore require both deterministic and stochastic modeling to be used in parallel, allowing for different degrees of confidence and incorporating datasets of different kinds. In particular, non-intrusive stochastic methods can be easily combined with widely used deterministic approaches, enabling this more robust form of data analysis to be applied to a range of computational challenges. Deterministic and Stochastic Modeling in Computational Electromagnetics provides a rare treatment of parallel deterministic–stochastic computational modeling and its beneficial applications. Unlike other works of its kind, which generally treat deterministic and stochastic modeling in isolation from one another, it aims to demonstrate the usefulness of a combined approach and present particular use-cases in which such an approach is clearly required. It offers a non-intrusive stochastic approach which can be incorporated with minimal effort into virtually all existing computational models. Readers will also find: A range of specific examples demonstrating the efficiency of deterministic–stochastic modeling Computational examples of successful applications including ground penetrating radars (GPR), radiation from 5G systems, transcranial magnetic and electric stimulation (TMS and TES), and more Introduction to fundamental principles in field theory to ground the discussion of computational modeling Deterministic and Stochastic Modeling in Computational Electromagnetics is a valuable reference for researchers, including graduate and undergraduate students, in computational electromagnetics, as well as to multidisciplinary researchers, engineers, physicists, and mathematicians.
Book Synopsis Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling by : José Eduardo Souza De Cursi
Download or read book Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling written by José Eduardo Souza De Cursi and published by Springer Nature. This book was released on 2020-08-19 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings book discusses state-of-the-art research on uncertainty quantification in mechanical engineering, including statistical data concerning the entries and parameters of a system to produce statistical data on the outputs of the system. It is based on papers presented at Uncertainties 2020, a workshop organized on behalf of the Scientific Committee on Uncertainty in Mechanics (Mécanique et Incertain) of the AFM (French Society of Mechanical Sciences), the Scientific Committee on Stochastic Modeling and Uncertainty Quantification of the ABCM (Brazilian Society of Mechanical Sciences) and the SBMAC (Brazilian Society of Applied Mathematics).
Book Synopsis Uncertainty Quantification for Hyperbolic and Kinetic Equations by : Shi Jin
Download or read book Uncertainty Quantification for Hyperbolic and Kinetic Equations written by Shi Jin and published by Springer. This book was released on 2018-03-20 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.
Book Synopsis Model Validation and Uncertainty Quantification, Volume 3 by : Roland Platz
Download or read book Model Validation and Uncertainty Quantification, Volume 3 written by Roland Platz and published by Springer Nature. This book was released on 2023-10-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the third volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Introduction of Uncertainty Quantification Uncertainty Quantification in Dynamics Model Form Uncertainty and Selection incl. Round Robin Challenge Sensor and Information Fusion Virtual Sensing, Certification, and Real-Time Monitoring Surrogate Modeling
Book Synopsis Uncertainty Quantification by : Ralph C. Smith
Download or read book Uncertainty Quantification written by Ralph C. Smith and published by SIAM. This book was released on 2013-12-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.
Book Synopsis Computational Mechanics by : Zhenhan Yao
Download or read book Computational Mechanics written by Zhenhan Yao and published by 清华大学出版社有限公司. This book was released on 2004 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Active Subspaces by : Paul G. Constantine
Download or read book Active Subspaces written by Paul G. Constantine and published by SIAM. This book was released on 2015-03-17 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.
Book Synopsis Numerical Fluid Dynamics by : Dia Zeidan
Download or read book Numerical Fluid Dynamics written by Dia Zeidan and published by Springer Nature. This book was released on 2022-05-18 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains select invited chapters on the latest research in numerical fluid dynamics and applications. The book aims at discussing the state-of-the-art developments and improvements in numerical fluid dynamics. All the chapters are presented for approximating and simulating how these methods and computations interact with different topics such as shock waves, non-equilibrium single and two-phase flows, elastic human-airway, and global climate. In addition to the fundamental research involving novel types of mathematical sciences, the book presents theoretical and numerical developments in fluid dynamics. The contributions by well-established global experts in fluid dynamics have brought different features of numerical fluid dynamics in a single book. The book serves as a useful resource for high-impact advances involving computational fluid dynamics, including recent developments in mathematical modelling, numerical methods such as finite volume, finite difference and finite element, symbolic computations, and open numerical programs such as OpenFOAM software. The book addresses interdisciplinary topics in industrial mathematics that lie at the forefront of research into new types of mathematical sciences, including theory and applications. This book will be beneficial to industrial and academic researchers, as well as graduate students, working in the fields of natural and engineering sciences. The book will provide the reader highly successful materials and necessary research in the field of fluid dynamics.
Book Synopsis Large-Scale Inverse Problems and Quantification of Uncertainty by : Lorenz Biegler
Download or read book Large-Scale Inverse Problems and Quantification of Uncertainty written by Lorenz Biegler and published by John Wiley & Sons. This book was released on 2011-06-24 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.
Book Synopsis Handbook of Monte Carlo Methods by : Dirk P. Kroese
Download or read book Handbook of Monte Carlo Methods written by Dirk P. Kroese and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.
Book Synopsis Recent Advances in Numerical Methods for Hyperbolic PDE Systems by : María Luz Muñoz-Ruiz
Download or read book Recent Advances in Numerical Methods for Hyperbolic PDE Systems written by María Luz Muñoz-Ruiz and published by Springer Nature. This book was released on 2021-05-25 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume contains selected papers issued from the sixth edition of the International Conference "Numerical methods for hyperbolic problems" that took place in 2019 in Málaga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models. The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation.
Book Synopsis Uncertainty in Engineering by : Louis J. M. Aslett
Download or read book Uncertainty in Engineering written by Louis J. M. Aslett and published by Springer Nature. This book was released on 2022 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.
Book Synopsis Handbook of Smart Energy Systems by : Michel Fathi
Download or read book Handbook of Smart Energy Systems written by Michel Fathi and published by Springer Nature. This book was released on 2023-08-04 with total page 3382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook analyzes and develops methods and models to optimize solutions for energy access (for industry and the general world population alike) in terms of reliability and sustainability. With a focus on improving the performance of energy systems, it brings together state-of-the-art research on reliability enhancement, intelligent development, simulation and optimization, as well as sustainable development of energy systems. It helps energy stakeholders and professionals learn the methodologies needed to improve the reliability of energy supply-and-demand systems, achieve more efficient long-term operations, deal with uncertainties in energy systems, and reduce energy emissions. Highlighting novel models and their applications from leading experts in this important area, this book will appeal to researchers, students, and engineers in the various domains of smart energy systems and encourage them to pursue research and development in this exciting and highly relevant field.
Book Synopsis Numerical Methods for Stochastic Computations by : Dongbin Xiu
Download or read book Numerical Methods for Stochastic Computations written by Dongbin Xiu and published by Princeton University Press. This book was released on 2010-07-01 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples