Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Stochastic Analysis
Download Stochastic Analysis full books in PDF, epub, and Kindle. Read online Stochastic Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Stochastic Analysis by : Paul Malliavin
Download or read book Stochastic Analysis written by Paul Malliavin and published by Springer. This book was released on 2015-06-12 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 5 independent sections, this book accounts recent main developments of stochastic analysis: Gross-Stroock Sobolev space over a Gaussian probability space; quasi-sure analysis; anticipate stochastic integrals as divergence operators; principle of transfer from ordinary differential equations to stochastic differential equations; Malliavin calculus and elliptic estimates; stochastic Analysis in infinite dimension.
Book Synopsis Applied Stochastic Analysis by : Weinan E
Download or read book Applied Stochastic Analysis written by Weinan E and published by American Mathematical Soc.. This book was released on 2021-09-22 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.
Book Synopsis Foundations of Stochastic Analysis by : M. M. Rao
Download or read book Foundations of Stochastic Analysis written by M. M. Rao and published by Courier Corporation. This book was released on 2011-01-01 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic analysis involves the study of a process involving a randomly determined sequence of observations, each of which represents a sample of one element of probability distribution. This volume considers fundamental theories and contrasts the natural interplay between real and abstract methods. Starting with the introduction of the basic Kolmogorov-Bochner existence theorem, the text explores conditional expectations and probabilities as well as projective and direct limits. Subsequent chapters examine several aspects of discrete martingale theory, including applications to ergodic theory, likelihood ratios, and the Gaussian dichotomy theorem. Prerequisites include a standard measure theory course. No prior knowledge of probability is assumed; therefore, most of the results are proved in detail. Each chapter concludes with a problem section that features many hints and facts, including the most important results in information theory.
Book Synopsis Stochastic Analysis by : Shigeo Kusuoka
Download or read book Stochastic Analysis written by Shigeo Kusuoka and published by Springer Nature. This book was released on 2020-10-20 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.
Book Synopsis Stochastic Analysis of Biochemical Systems by : David F. Anderson
Download or read book Stochastic Analysis of Biochemical Systems written by David F. Anderson and published by Springer. This book was released on 2015-04-23 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on counting processes and continuous-time Markov chains motivated by examples and applications drawn from chemical networks in systems biology. The book should serve well as a supplement for courses in probability and stochastic processes. While the material is presented in a manner most suitable for students who have studied stochastic processes up to and including martingales in continuous time, much of the necessary background material is summarized in the Appendix. Students and Researchers with a solid understanding of calculus, differential equations and elementary probability and who are well-motivated by the applications will find this book of interest. David F. Anderson is Associate Professor in the Department of Mathematics at the University of Wisconsin and Thomas G. Kurtz is Emeritus Professor in the Departments of Mathematics and Statistics at that university. Their research is focused on probability and stochastic processes with applications in biology and other areas of science and technology. These notes are based in part on lectures given by Professor Anderson at the University of Wisconsin – Madison and by Professor Kurtz at Goethe University Frankfurt.
Book Synopsis Introduction to Stochastic Analysis and Malliavin Calculus by : Giuseppe Da Prato
Download or read book Introduction to Stochastic Analysis and Malliavin Calculus written by Giuseppe Da Prato and published by Springer. This book was released on 2014-07-01 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an introductory course on differential stochastic equations and Malliavin calculus. The material of the book has grown out of a series of courses delivered at the Scuola Normale Superiore di Pisa (and also at the Trento and Funchal Universities) and has been refined over several years of teaching experience in the subject. The lectures are addressed to a reader who is familiar with basic notions of measure theory and functional analysis. The first part is devoted to the Gaussian measure in a separable Hilbert space, the Malliavin derivative, the construction of the Brownian motion and Itô's formula. The second part deals with differential stochastic equations and their connection with parabolic problems. The third part provides an introduction to the Malliavin calculus. Several applications are given, notably the Feynman-Kac, Girsanov and Clark-Ocone formulae, the Krylov-Bogoliubov and Von Neumann theorems. In this third edition several small improvements are added and a new section devoted to the differentiability of the Feynman-Kac semigroup is introduced. A considerable number of corrections and improvements have been made.
Book Synopsis Stochastic Analysis in Discrete and Continuous Settings by : Nicolas Privault
Download or read book Stochastic Analysis in Discrete and Continuous Settings written by Nicolas Privault and published by Springer. This book was released on 2009-07-14 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.
Book Synopsis Stochastic Analysis by : Ichirō Shigekawa
Download or read book Stochastic Analysis written by Ichirō Shigekawa and published by American Mathematical Soc.. This book was released on 2004 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise introduction to stochastic analysis, particularly the Malliavin calculus. A detailed description is given of all technical tools necessary to describe the theory, such as the Wiener process, the Ornstein-Uhlenbeck process, and Sobolev spaces. Applications of stochastic cal
Book Synopsis Introduction to Infinite Dimensional Stochastic Analysis by : Zhi-yuan Huang
Download or read book Introduction to Infinite Dimensional Stochastic Analysis written by Zhi-yuan Huang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).
Book Synopsis Stochastic Analysis for Poisson Point Processes by : Giovanni Peccati
Download or read book Stochastic Analysis for Poisson Point Processes written by Giovanni Peccati and published by Springer. This book was released on 2016-07-07 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolving field, offering a rigorous yet lively presentation of its many facets.
Book Synopsis Option Theory with Stochastic Analysis by : Fred Espen Benth
Download or read book Option Theory with Stochastic Analysis written by Fred Espen Benth and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a very basic and accessible introduction to option pricing, invoking a minimum of stochastic analysis and requiring only basic mathematical skills. It covers the theory essential to the statistical modeling of stocks, pricing of derivatives with martingale theory, and computational finance including both finite-difference and Monte Carlo methods.
Book Synopsis Introduction to Stochastic Analysis by : Vigirdas Mackevicius
Download or read book Introduction to Stochastic Analysis written by Vigirdas Mackevicius and published by John Wiley & Sons. This book was released on 2013-02-07 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion processes. The topics covered include Brownian motion; motivation of stochastic models with Brownian motion; Itô and Stratonovich stochastic integrals, Itô’s formula; stochastic differential equations (SDEs); solutions of SDEs as Markov processes; application examples in physical sciences and finance; simulation of solutions of SDEs (strong and weak approximations). Exercises with hints and/or solutions are also provided.
Book Synopsis Stochastic Analysis on Manifolds by : Elton P. Hsu
Download or read book Stochastic Analysis on Manifolds written by Elton P. Hsu and published by American Mathematical Soc.. This book was released on 2002 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mainly from the perspective of a probabilist, Hsu shows how stochastic analysis and differential geometry can work together for their mutual benefit. He writes for researchers and advanced graduate students with a firm foundation in basic euclidean stochastic analysis, and differential geometry. He does not include the exercises usual to such texts, but does provide proofs throughout that invite readers to test their understanding. Annotation copyrighted by Book News Inc., Portland, OR.
Book Synopsis Bayesian Analysis of Stochastic Process Models by : David Insua
Download or read book Bayesian Analysis of Stochastic Process Models written by David Insua and published by John Wiley & Sons. This book was released on 2012-04-02 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
Book Synopsis Stochastic Analysis for Finance with Simulations by : Geon Ho Choe
Download or read book Stochastic Analysis for Finance with Simulations written by Geon Ho Choe and published by Springer. This book was released on 2016-07-14 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to stochastic analysis and quantitative finance; it includes both theoretical and computational methods. Topics covered are stochastic calculus, option pricing, optimal portfolio investment, and interest rate models. Also included are simulations of stochastic phenomena, numerical solutions of the Black–Scholes–Merton equation, Monte Carlo methods, and time series. Basic measure theory is used as a tool to describe probabilistic phenomena. The level of familiarity with computer programming is kept to a minimum. To make the book accessible to a wider audience, some background mathematical facts are included in the first part of the book and also in the appendices. This work attempts to bridge the gap between mathematics and finance by using diagrams, graphs and simulations in addition to rigorous theoretical exposition. Simulations are not only used as the computational method in quantitative finance, but they can also facilitate an intuitive and deeper understanding of theoretical concepts. Stochastic Analysis for Finance with Simulations is designed for readers who want to have a deeper understanding of the delicate theory of quantitative finance by doing computer simulations in addition to theoretical study. It will particularly appeal to advanced undergraduate and graduate students in mathematics and business, but not excluding practitioners in finance industry.
Book Synopsis Stochastic Modeling by : Barry L. Nelson
Download or read book Stochastic Modeling written by Barry L. Nelson and published by Courier Corporation. This book was released on 2012-10-11 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.
Book Synopsis Nonstandard Methods in Stochastic Analysis and Mathematical Physics by : Sergio Albeverio
Download or read book Nonstandard Methods in Stochastic Analysis and Mathematical Physics written by Sergio Albeverio and published by Courier Dover Publications. This book was released on 2009-02-26 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-part treatment begins with a self-contained introduction to the subject, followed by applications to stochastic analysis and mathematical physics. "A welcome addition." — Bulletin of the American Mathematical Society. 1986 edition.