R for Data Science

Download R for Data Science PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491910364
Total Pages : 521 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis R for Data Science by : Hadley Wickham

Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Practical Statistics for Data Scientists

Download Practical Statistics for Data Scientists PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491952911
Total Pages : 322 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Practical Statistics for Data Scientists by : Peter Bruce

Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Statistics in Scientific Investigation

Download Statistics in Scientific Investigation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475742908
Total Pages : 689 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Statistics in Scientific Investigation by : Glen McPherson

Download or read book Statistics in Scientific Investigation written by Glen McPherson and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book I have taken on the challenge of providing an insight into Statistics and a blueprint for statistical application for a wide audience. For students in the sciences and related professional areas and for researchers who may need to apply Statistics in the course of scientific experimenta tion, the development emphasizes the manner in which Statistics fits into the framework of the scientific method. Mathematics students will find a unified, but non-mathematical structure for Statistics which can provide the motivation for the theoretical development found in standard texts on theoretical Statistics. For statisticians and students of Statistics, the ideas contained in the book and their manner of development may aid in the de velopment of better communications between scientists and statisticians. The demands made of readers are twofold: a minimal mathematical prerequisite which is simply an ability to comprehend formulae containing mathematical variables, such as those derived from a high school course in algebra or the equivalent; a grasp of the process of scientific modeling which comes with ei ther experience in scientific experimentation or practice with solving mathematical problems.

Statistical Science in the Courtroom

Download Statistical Science in the Courtroom PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461212162
Total Pages : 454 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Statistical Science in the Courtroom by : Joseph L. Gastwirth

Download or read book Statistical Science in the Courtroom written by Joseph L. Gastwirth and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expert testimony relying on scientific and other specialized evidence has come under increased scrutiny by the legal system. A trilogy of recent U.S. Supreme Court cases has assigned judges the task of assessing the relevance and reliability of proposed expert testimony. In conjunction with the Federal judiciary, the American Association for the Advancement of Science has initiated a project to provide judges indicating a need with their own expert. This concern with the proper interpretation of scientific evidence, especially that of a probabilistic nature, has also occurred in England, Australia and in several European countries. Statistical Science in the Courtroom is a collection of articles written by statisticians and legal scholars who have been concerned with problems arising in the use of statistical evidence. A number of articles describe DNA evidence and the difficulties of properly calculating the probability that a random individual's profile would "match" that of the evidence as well as the proper way to intrepret the result. In addition to the technical issues, several authors tell about their experiences in court. A few have become disenchanted with their involvement and describe the events that led them to devote less time to this application. Other articles describe the role of statistical evidence in cases concerning discrimination against minorities, product liability, environmental regulation, the appropriateness and fairness of sentences and how being involved in legal statistics has raised interesting statistical problems requiring further research.

Introduction to Data Science

Download Introduction to Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000708039
Total Pages : 836 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science by : Rafael A. Irizarry

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

The Art of Statistics

Download The Art of Statistics PDF Online Free

Author :
Publisher : Basic Books
ISBN 13 : 1541618521
Total Pages : 359 pages
Book Rating : 4.5/5 (416 download)

DOWNLOAD NOW!


Book Synopsis The Art of Statistics by : David Spiegelhalter

Download or read book The Art of Statistics written by David Spiegelhalter and published by Basic Books. This book was released on 2019-09-03 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this "important and comprehensive" guide to statistical thinking (New Yorker), discover how data literacy is changing the world and gives you a better understanding of life’s biggest problems. Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.

Statistics for Food Scientists

Download Statistics for Food Scientists PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0124171907
Total Pages : 186 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis Statistics for Food Scientists by : Frank Rossi

Download or read book Statistics for Food Scientists written by Frank Rossi and published by Academic Press. This book was released on 2015-10-06 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: The practical approached championed in this book have led to increasing the quality on many successful products through providing a better understanding of consumer needs, current product and process performance and a desired future state. In 2009, Frank Rossi and Viktor Mirtchev brought their practical statistical thinking forward and created the course "Statistics for Food Scientists. The intent of the course was to help product and process developers increase the probability of their project's success through the incorporation of practical statistical thinking in their challenges. The course has since grown and has become the basis of this book. - Presents detailed descriptions of statistical concepts and commonly used statistical tools to better analyze data and interpret results - Demonstrates thorough examples and specific practical problems of what food scientists face in their work and how the tools of statistics can help them to make more informed decisions - Provides information to show how statistical tools are applied to improve research results, enhance product quality, and promote overall product development

Computational Statistics in Data Science

Download Computational Statistics in Data Science PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119561086
Total Pages : 672 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Computational Statistics in Data Science by : Richard A. Levine

Download or read book Computational Statistics in Data Science written by Richard A. Levine and published by John Wiley & Sons. This book was released on 2022-03-23 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ein unverzichtbarer Leitfaden bei der Anwendung computergestützter Statistik in der modernen Datenwissenschaft In Computational Statistics in Data Science präsentiert ein Team aus bekannten Mathematikern und Statistikern eine fundierte Zusammenstellung von Konzepten, Theorien, Techniken und Praktiken der computergestützten Statistik für ein Publikum, das auf der Suche nach einem einzigen, umfassenden Referenzwerk für Statistik in der modernen Datenwissenschaft ist. Das Buch enthält etliche Kapitel zu den wesentlichen konkreten Bereichen der computergestützten Statistik, in denen modernste Techniken zeitgemäß und verständlich dargestellt werden. Darüber hinaus bietet Computational Statistics in Data Science einen kostenlosen Zugang zu den fertigen Einträgen im Online-Nachschlagewerk Wiley StatsRef: Statistics Reference Online. Außerdem erhalten die Leserinnen und Leser: * Eine gründliche Einführung in die computergestützte Statistik mit relevanten und verständlichen Informationen für Anwender und Forscher in verschiedenen datenintensiven Bereichen * Umfassende Erläuterungen zu aktuellen Themen in der Statistik, darunter Big Data, Datenstromverarbeitung, quantitative Visualisierung und Deep Learning Das Werk eignet sich perfekt für Forscher und Wissenschaftler sämtlicher Fachbereiche, die Techniken der computergestützten Statistik auf einem gehobenen oder fortgeschrittenen Niveau anwenden müssen. Zudem gehört Computational Statistics in Data Science in das Bücherregal von Wissenschaftlern, die sich mit der Erforschung und Entwicklung von Techniken der computergestützten Statistik und statistischen Grafiken beschäftigen.

Probability and Statistics

Download Probability and Statistics PDF Online Free

Author :
Publisher : Macmillan
ISBN 13 : 9780716747420
Total Pages : 704 pages
Book Rating : 4.7/5 (474 download)

DOWNLOAD NOW!


Book Synopsis Probability and Statistics by : Michael J. Evans

Download or read book Probability and Statistics written by Michael J. Evans and published by Macmillan. This book was released on 2004 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.

Statistics for Science and Engineering

Download Statistics for Science and Engineering PDF Online Free

Author :
Publisher : Pearson
ISBN 13 : 9780201437201
Total Pages : 0 pages
Book Rating : 4.4/5 (372 download)

DOWNLOAD NOW!


Book Synopsis Statistics for Science and Engineering by : John J. Kinney

Download or read book Statistics for Science and Engineering written by John J. Kinney and published by Pearson. This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics for Science and Engineering was written for an introductory one or two semester course in probability and statistics for junior or senior level students. It is an introduction to the statistical analysis of data that arise from experiments, sample surveys, or other observational studies. It focuses on topics that are frequently used by scientists and engineers, particularly the topics of regression, design of experiments, and statistical process control. Graphs and Statistics, Random Variables and Probability Distributions, Estimation and Hypothesis Testing, Simple Linear Regression-Summarizing Data with Equations, Multiple Linear Regression, Design of Science and Engineering Experiments, Statistical Process Control For all readers interested in statistics for science and engineering.

An Introduction to Statistical Learning

Download An Introduction to Statistical Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031387473
Total Pages : 617 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Statistical Learning by : Gareth James

Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Introduction to Statistics for Forensic Scientists

Download Introduction to Statistics for Forensic Scientists PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118700104
Total Pages : 276 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Statistics for Forensic Scientists by : David Lucy

Download or read book Introduction to Statistics for Forensic Scientists written by David Lucy and published by John Wiley & Sons. This book was released on 2013-05-03 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Statistics for Forensic Scientists is an essential introduction to the subject, gently guiding the reader through the key statistical techniques used to evaluate various types of forensic evidence. Assuming only a modest mathematical background, the book uses real-life examples from the forensic science literature and forensic case-work to illustrate relevant statistical concepts and methods. Opening with a brief overview of the history and use of statistics within forensic science, the text then goes on to introduce statistical techniques commonly used to examine data obtained during laboratory experiments. There is a strong emphasis on the evaluation of scientific observation as evidence and modern Bayesian approaches to interpreting forensic data for the courts. The analysis of key forms of evidence are discussed throughout with a particular focus on DNA, fibres and glass. An invaluable introduction to the statistical interpretation of forensic evidence; this book will be invaluable for all undergraduates taking courses in forensic science. Introduction to the key statistical techniques used in the evaluation of forensic evidence Includes end of chapter exercises to enhance student understanding Numerous examples taken from forensic science to put the subject into context

Philosophy of Statistics

Download Philosophy of Statistics PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080930964
Total Pages : 1253 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Philosophy of Statistics by :

Download or read book Philosophy of Statistics written by and published by Elsevier. This book was released on 2011-05-31 with total page 1253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statisticians and philosophers of science have many common interests but restricted communication with each other. This volume aims to remedy these shortcomings. It provides state-of-the-art research in the area of philosophy of statistics by encouraging numerous experts to communicate with one another without feeling "restricted by their disciplines or thinking "piecemeal in their treatment of issues. A second goal of this book is to present work in the field without bias toward any particular statistical paradigm. Broadly speaking, the essays in this Handbook are concerned with problems of induction, statistics and probability. For centuries, foundational problems like induction have been among philosophers' favorite topics; recently, however, non-philosophers have increasingly taken a keen interest in these issues. This volume accordingly contains papers by both philosophers and non-philosophers, including scholars from nine academic disciplines. - Provides a bridge between philosophy and current scientific findings - Covers theory and applications - Encourages multi-disciplinary dialogue

Probability and Statistics

Download Probability and Statistics PDF Online Free

Author :
Publisher : Infobase Publishing
ISBN 13 : 0816068739
Total Pages : 241 pages
Book Rating : 4.8/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Probability and Statistics by : John Tabak

Download or read book Probability and Statistics written by John Tabak and published by Infobase Publishing. This book was released on 2014-05-14 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a survey of the history and evolution of the branch of mathematics that focuses on probability and statistics, including useful applications and notable mathematicians in this area.

Statistics and Analysis of Scientific Data

Download Statistics and Analysis of Scientific Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493965727
Total Pages : 323 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Statistics and Analysis of Scientific Data by : Massimiliano Bonamente

Download or read book Statistics and Analysis of Scientific Data written by Massimiliano Bonamente and published by Springer. This book was released on 2016-11-08 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised second edition of this textbook provides the reader with a solid foundation in probability theory and statistics as applied to the physical sciences, engineering and related fields. It covers a broad range of numerical and analytical methods that are essential for the correct analysis of scientific data, including probability theory, distribution functions of statistics, fits to two-dimensional data and parameter estimation, Monte Carlo methods and Markov chains. Features new to this edition include: • a discussion of statistical techniques employed in business science, such as multiple regression analysis of multivariate datasets. • a new chapter on the various measures of the mean including logarithmic averages. • new chapters on systematic errors and intrinsic scatter, and on the fitting of data with bivariate errors. • a new case study and additional worked examples. • mathematical derivations and theoretical background material have been appropriately marked, to improve the readability of the text. • end-of-chapter summary boxes, for easy reference. As in the first edition, the main pedagogical method is a theory-then-application approach, where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and practical application of the material. The level is appropriate for undergraduates and beginning graduate students, and as a reference for the experienced researcher. Basic calculus is used in some of the derivations, and no previous background in probability and statistics is required. The book includes many numerical tables of data, as well as exercises and examples to aid the readers' understanding of the topic.

Statistics for Health Data Science

Download Statistics for Health Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030598896
Total Pages : 238 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Statistics for Health Data Science by : Ruth Etzioni

Download or read book Statistics for Health Data Science written by Ruth Etzioni and published by Springer Nature. This book was released on 2021-01-04 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students’ anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep (“organic”) understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/

Foundations of Statistics for Data Scientists

Download Foundations of Statistics for Data Scientists PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000462919
Total Pages : 486 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Statistics for Data Scientists by : Alan Agresti

Download or read book Foundations of Statistics for Data Scientists written by Alan Agresti and published by CRC Press. This book was released on 2021-11-22 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.