Statistical Approaches to Causal Analysis

Download Statistical Approaches to Causal Analysis PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 1529711118
Total Pages : 178 pages
Book Rating : 4.5/5 (297 download)

DOWNLOAD NOW!


Book Synopsis Statistical Approaches to Causal Analysis by : Matthew McBee

Download or read book Statistical Approaches to Causal Analysis written by Matthew McBee and published by SAGE. This book was released on 2022-03-01 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an up-to-date and accessible introduction to causal inference in quantitative research. Featuring worked example datasets throughout, it clearly outlines the steps involved in carrying out various types of statistical causal analysis. In turn, helping you apply these methods to your own research. It contains guidance on: Selecting the most appropriate conditioning method for your data. Applying the Rubin’s Causal Model to your analysis, a mathematical framework for understanding and ensuring accurate causation inferences. Utilising various techniques and designs, such as propensity scores, instrumental variables analysis, and regression discontinuity designs, to better synthesise and analyse different types of data. Part of The SAGE Quantitative Research Kit, this book will give you the know-how and confidence needed to succeed on your quantitative research journey.

Statistical Models for Causal Analysis

Download Statistical Models for Causal Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118031342
Total Pages : 274 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Statistical Models for Causal Analysis by : Robert D. Retherford

Download or read book Statistical Models for Causal Analysis written by Robert D. Retherford and published by John Wiley & Sons. This book was released on 2011-02-01 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simplifies the treatment of statistical inference focusing on how to specify and interpret models in the context of testing causal theories. Simple bivariate regression, multiple regression, multiple classification analysis, path analysis, logit regression, multinomial logit regression and survival models are among the subjects covered. Features an appendix of computer programs (for major statistical packages) that are used to generate illustrative examples contained in the chapters.

Causal Inference in Statistics

Download Causal Inference in Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119186862
Total Pages : 162 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Causal Inference in Statistics by : Judea Pearl

Download or read book Causal Inference in Statistics written by Judea Pearl and published by John Wiley & Sons. This book was released on 2016-01-25 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Statistical Models and Causal Inference

Download Statistical Models and Causal Inference PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521195004
Total Pages : 416 pages
Book Rating : 4.5/5 (211 download)

DOWNLOAD NOW!


Book Synopsis Statistical Models and Causal Inference by : David A. Freedman

Download or read book Statistical Models and Causal Inference written by David A. Freedman and published by Cambridge University Press. This book was released on 2010 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.

The SAGE Handbook of Regression Analysis and Causal Inference

Download The SAGE Handbook of Regression Analysis and Causal Inference PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 1473908353
Total Pages : 425 pages
Book Rating : 4.4/5 (739 download)

DOWNLOAD NOW!


Book Synopsis The SAGE Handbook of Regression Analysis and Causal Inference by : Henning Best

Download or read book The SAGE Handbook of Regression Analysis and Causal Inference written by Henning Best and published by SAGE. This book was released on 2013-12-20 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: ′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.

Introduction to Statistical Decision Theory

Download Introduction to Statistical Decision Theory PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351621394
Total Pages : 305 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Statistical Decision Theory by : Silvia Bacci

Download or read book Introduction to Statistical Decision Theory written by Silvia Bacci and published by CRC Press. This book was released on 2019-07-11 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Statistical Decision Theory: Utility Theory and Causal Analysis provides the theoretical background to approach decision theory from a statistical perspective. It covers both traditional approaches, in terms of value theory and expected utility theory, and recent developments, in terms of causal inference. The book is specifically designed to appeal to students and researchers that intend to acquire a knowledge of statistical science based on decision theory. Features Covers approaches for making decisions under certainty, risk, and uncertainty Illustrates expected utility theory and its extensions Describes approaches to elicit the utility function Reviews classical and Bayesian approaches to statistical inference based on decision theory Discusses the role of causal analysis in statistical decision theory

Causal Inference in Statistics, Social, and Biomedical Sciences

Download Causal Inference in Statistics, Social, and Biomedical Sciences PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521885884
Total Pages : 647 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Causal Inference in Statistics, Social, and Biomedical Sciences by : Guido W. Imbens

Download or read book Causal Inference in Statistics, Social, and Biomedical Sciences written by Guido W. Imbens and published by Cambridge University Press. This book was released on 2015-04-06 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.

Causality

Download Causality PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 052189560X
Total Pages : 487 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Causality by : Judea Pearl

Download or read book Causality written by Judea Pearl and published by Cambridge University Press. This book was released on 2009-09-14 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...

Causal Inference

Download Causal Inference PDF Online Free

Author :
Publisher : Yale University Press
ISBN 13 : 0300255888
Total Pages : 585 pages
Book Rating : 4.3/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Causal Inference by : Scott Cunningham

Download or read book Causal Inference written by Scott Cunningham and published by Yale University Press. This book was released on 2021-01-26 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.

Causality

Download Causality PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119941733
Total Pages : 387 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Causality by : Carlo Berzuini

Download or read book Causality written by Carlo Berzuini and published by John Wiley & Sons. This book was released on 2012-06-04 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.

The Book of Why

Download The Book of Why PDF Online Free

Author :
Publisher : Basic Books
ISBN 13 : 0465097618
Total Pages : 432 pages
Book Rating : 4.4/5 (65 download)

DOWNLOAD NOW!


Book Synopsis The Book of Why by : Judea Pearl

Download or read book The Book of Why written by Judea Pearl and published by Basic Books. This book was released on 2018-05-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.

Statistics and Causality

Download Statistics and Causality PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118947061
Total Pages : 497 pages
Book Rating : 4.1/5 (189 download)

DOWNLOAD NOW!


Book Synopsis Statistics and Causality by : Wolfgang Wiedermann

Download or read book Statistics and Causality written by Wolfgang Wiedermann and published by John Wiley & Sons. This book was released on 2016-05-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: b”STATISTICS AND CAUSALITYA one-of-a-kind guide to identifying and dealing with modern statistical developments in causality Written by a group of well-known experts, Statistics and Causality: Methods for Applied Empirical Research focuses on the most up-to-date developments in statistical methods in respect to causality. Illustrating the properties of statistical methods to theories of causality, the book features a summary of the latest developments in methods for statistical analysis of causality hypotheses. The book is divided into five accessible and independent parts. The first part introduces the foundations of causal structures and discusses issues associated with standard mechanistic and difference-making theories of causality. The second part features novel generalizations of methods designed to make statements concerning the direction of effects. The third part illustrates advances in Granger-causality testing and related issues. The fourth part focuses on counterfactual approaches and propensity score analysis. Finally, the fifth part presents designs for causal inference with an overview of the research designs commonly used in epidemiology. Statistics and Causality: Methods for Applied Empirical Research also includes: New statistical methodologies and approaches to causal analysis in the context of the continuing development of philosophical theories End-of-chapter bibliographies that provide references for further discussions and additional research topics Discussions on the use and applicability of software when appropriate Statistics and Causality: Methods for Applied Empirical Research is an ideal reference for practicing statisticians, applied mathematicians, psychologists, sociologists, logicians, medical professionals, epidemiologists, and educators who want to learn more about new methodologies in causal analysis. The book is also an excellent textbook for graduate-level courses in causality and qualitative logic.

Handbook of Causal Analysis for Social Research

Download Handbook of Causal Analysis for Social Research PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400760949
Total Pages : 423 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Causal Analysis for Social Research by : Stephen L. Morgan

Download or read book Handbook of Causal Analysis for Social Research written by Stephen L. Morgan and published by Springer Science & Business Media. This book was released on 2013-04-22 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: What constitutes a causal explanation, and must an explanation be causal? What warrants a causal inference, as opposed to a descriptive regularity? What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of these effects? What complications do the interactions of individuals create for these techniques? When can mixed methods of analysis be used to deepen causal accounts? Must causal claims include generative mechanisms, and how effective are empirical methods designed to discover them? The Handbook of Causal Analysis for Social Research tackles these questions with nineteen chapters from leading scholars in sociology, statistics, public health, computer science, and human development.

Statistical Approaches to Causal Analysis

Download Statistical Approaches to Causal Analysis PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 1529711126
Total Pages : 265 pages
Book Rating : 4.5/5 (297 download)

DOWNLOAD NOW!


Book Synopsis Statistical Approaches to Causal Analysis by : Matthew McBee

Download or read book Statistical Approaches to Causal Analysis written by Matthew McBee and published by SAGE. This book was released on 2022-03 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical, up-to-date, step-by-step guidance on causal analysis; which features worked example datasets throughout to see methods in action. McBee clearly demonstrates techniques such as Rubin causal model, direct acyclic graphs and propensity score analysis.

Causal Inference

Download Causal Inference PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420076165
Total Pages : 352 pages
Book Rating : 4.0/5 (761 download)

DOWNLOAD NOW!


Book Synopsis Causal Inference by : Miquel A. Hernan

Download or read book Causal Inference written by Miquel A. Hernan and published by CRC Press. This book was released on 2019-07-07 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of causal inference methods is growing exponentially in fields that deal with observational data. Written by pioneers in the field, this practical book presents an authoritative yet accessible overview of the methods and applications of causal inference. With a wide range of detailed, worked examples using real epidemiologic data as well as software for replicating the analyses, the text provides a thorough introduction to the basics of the theory for non-time-varying treatments and the generalization to complex longitudinal data.

Fundamentals of Causal Inference

Download Fundamentals of Causal Inference PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 100047030X
Total Pages : 248 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Causal Inference by : Babette A. Brumback

Download or read book Fundamentals of Causal Inference written by Babette A. Brumback and published by CRC Press. This book was released on 2021-11-10 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the primary motivations for clinical trials and observational studies of humans is to infer cause and effect. Disentangling causation from confounding is of utmost importance. Fundamentals of Causal Inference explains and relates different methods of confounding adjustment in terms of potential outcomes and graphical models, including standardization, difference-in-differences estimation, the front-door method, instrumental variables estimation, and propensity score methods. It also covers effect-measure modification, precision variables, mediation analyses, and time-dependent confounding. Several real data examples, simulation studies, and analyses using R motivate the methods throughout. The book assumes familiarity with basic statistics and probability, regression, and R and is suitable for seniors or graduate students in statistics, biostatistics, and data science as well as PhD students in a wide variety of other disciplines, including epidemiology, pharmacy, the health sciences, education, and the social, economic, and behavioral sciences. Beginning with a brief history and a review of essential elements of probability and statistics, a unique feature of the book is its focus on real and simulated datasets with all binary variables to reduce complex methods down to their fundamentals. Calculus is not required, but a willingness to tackle mathematical notation, difficult concepts, and intricate logical arguments is essential. While many real data examples are included, the book also features the Double What-If Study, based on simulated data with known causal mechanisms, in the belief that the methods are best understood in circumstances where they are known to either succeed or fail. Datasets, R code, and solutions to odd-numbered exercises are available at www.routledge.com.

Computer Age Statistical Inference

Download Computer Age Statistical Inference PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108107958
Total Pages : 496 pages
Book Rating : 4.1/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Computer Age Statistical Inference by : Bradley Efron

Download or read book Computer Age Statistical Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2016-07-21 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.