Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Statistical Analysis Of Spatial And Spatio Temporal Point Patterns Third Edition
Download Statistical Analysis Of Spatial And Spatio Temporal Point Patterns Third Edition full books in PDF, epub, and Kindle. Read online Statistical Analysis Of Spatial And Spatio Temporal Point Patterns Third Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition by : Peter J. Diggle
Download or read book Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition written by Peter J. Diggle and published by CRC Press. This book was released on 2013-07-23 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a prominent statistician and author, the first edition of this bestseller broke new ground in the then emerging subject of spatial statistics with its coverage of spatial point patterns. Retaining all the material from the second edition and adding substantial new material, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition presents models and statistical methods for analyzing spatially referenced point process data. Reflected in the title, this third edition now covers spatio-temporal point patterns. It explores the methodological developments from the last decade along with diverse applications that use spatio-temporally indexed data. Practical examples illustrate how the methods are applied to analyze spatial data in the life sciences. This edition also incorporates the use of R through several packages dedicated to the analysis of spatial point process data. Sample R code and data sets are available on the author’s website.
Book Synopsis Statistical Analysis of Spatial Point Patterns by : Peter Diggle
Download or read book Statistical Analysis of Spatial Point Patterns written by Peter Diggle and published by Hodder Education. This book was released on 2003 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a new edition of the classic monograph, published in 1983, that described those statistical methods that are used to analyse spatial data. This edition has been entirely updated with the latest developments in the analysis of spatial data which have grown to become a large area of concern in environmental and epidemiological research. There is a website connected with the volume that contains additional data sets and a new chapter on spatial epidemiology. It is appropriate for graduate level statisticians in various disciplines.
Book Synopsis Spatio-Temporal Statistics with R by : Christopher K. Wikle
Download or read book Spatio-Temporal Statistics with R written by Christopher K. Wikle and published by CRC Press. This book was released on 2019-02-18 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these "big data" that are available are spatio-temporal in nature, meaning that they can be indexed by their spatial locations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modelling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation Provides a gradual entry to the methodological aspects of spatio-temporal statistics Provides broad coverage of using R as well as "R Tips" throughout. Features detailed examples and applications in end-of-chapter Labs Features "Technical Notes" throughout to provide additional technical detail where relevant Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.
Book Synopsis Handbook of Infectious Disease Data Analysis by : Leonhard Held
Download or read book Handbook of Infectious Disease Data Analysis written by Leonhard Held and published by CRC Press. This book was released on 2019-11-07 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen an explosion in new kinds of data on infectious diseases, including data on social contacts, whole genome sequences of pathogens, biomarkers for susceptibility to infection, serological panel data, and surveillance data. The Handbook of Infectious Disease Data Analysis provides an overview of many key statistical methods that have been developed in response to such new data streams and the associated ability to address key scientific and epidemiological questions. A unique feature of the Handbook is the wide range of topics covered. Key features Contributors include many leading researchers in the field Divided into four main sections: Basic concepts, Analysis of Outbreak Data, Analysis of Seroprevalence Data, Analysis of Surveillance Data Numerous case studies and examples throughout Provides both introductory material and key reference material
Book Synopsis Spatial Point Patterns by : Adrian Baddeley
Download or read book Spatial Point Patterns written by Adrian Baddeley and published by CRC Press. This book was released on 2015-11-11 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th
Book Synopsis Handbook of Spatial Statistics by : Alan E. Gelfand
Download or read book Handbook of Spatial Statistics written by Alan E. Gelfand and published by CRC Press. This book was released on 2010-03-19 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters.The handbook begins with a historical intro
Book Synopsis Theory of Spatial Statistics by : M.N.M. van Lieshout
Download or read book Theory of Spatial Statistics written by M.N.M. van Lieshout and published by CRC Press. This book was released on 2019-03-19 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.
Book Synopsis Design and Analysis of Cross-Over Trials, Third Edition by : Byron Jones
Download or read book Design and Analysis of Cross-Over Trials, Third Edition written by Byron Jones and published by CRC Press. This book was released on 2014-10-08 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and Analysis of Cross-Over Trials is concerned with a specific kind of comparative trial known as the cross-over trial, in which subjects receive different sequences of treatments. Such trials are widely used in clinical and medical research, and in other diverse areas such as veterinary science, psychology, sports science, and agriculture. The first edition of this book was the first to be wholly devoted to the subject. The second edition was revised to mirror growth and development in areas where the design remained in widespread use and new areas where it had grown in importance. This new Third Edition: Contains seven new chapters written in the form of short case studies that address re-estimating sample size when testing for average bioequivalence, fitting a nonlinear dose response function, estimating a dose to take forward from phase two to phase three, establishing proof of concept, and recalculating the sample size using conditional power Employs the R package Crossover, specially created to accompany the book and provide a graphical user interface for locating designs in a large catalog and for searching for new designs Includes updates regarding the use of period baselines and the analysis of data from very small trials Reflects the availability of new procedures in SAS, particularly proc glimmix Presents the SAS procedure proc mcmc as an alternative to WinBUGS for Bayesian analysis Complete with real data and downloadable SAS code, Design and Analysis of Cross-Over Trials, Third Edition provides a practical understanding of the latest methods along with the necessary tools for implementation.
Book Synopsis Statistical Methods for Spatial Data Analysis by : Oliver Schabenberger
Download or read book Statistical Methods for Spatial Data Analysis written by Oliver Schabenberger and published by CRC Press. This book was released on 2004-12-20 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding spatial statistics requires tools from applied and mathematical statistics, linear model theory, regression, time series, and stochastic processes. It also requires a mindset that focuses on the unique characteristics of spatial data and the development of specialized analytical tools designed explicitly for spatial data analysis. Statistical Methods for Spatial Data Analysis answers the demand for a text that incorporates all of these factors by presenting a balanced exposition that explores both the theoretical foundations of the field of spatial statistics as well as practical methods for the analysis of spatial data. This book is a comprehensive and illustrative treatment of basic statistical theory and methods for spatial data analysis, employing a model-based and frequentist approach that emphasizes the spatial domain. It introduces essential tools and approaches including: measures of autocorrelation and their role in data analysis; the background and theoretical framework supporting random fields; the analysis of mapped spatial point patterns; estimation and modeling of the covariance function and semivariogram; a comprehensive treatment of spatial analysis in the spectral domain; and spatial prediction and kriging. The volume also delivers a thorough analysis of spatial regression, providing a detailed development of linear models with uncorrelated errors, linear models with spatially-correlated errors and generalized linear mixed models for spatial data. It succinctly discusses Bayesian hierarchical models and concludes with reviews on simulating random fields, non-stationary covariance, and spatio-temporal processes. Additional material on the CRC Press website supplements the content of this book. The site provides data sets used as examples in the text, software code that can be used to implement many of the principal methods described and illustrated, and updates to the text itself.
Book Synopsis Model-based Geostatistics for Global Public Health by : Peter J. Diggle
Download or read book Model-based Geostatistics for Global Public Health written by Peter J. Diggle and published by CRC Press. This book was released on 2019-03-04 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model-based Geostatistics for Global Public Health: Methods and Applications provides an introductory account of model-based geostatistics, its implementation in open-source software and its application in public health research. In the public health problems that are the focus of this book, the authors describe and explain the pattern of spatial variation in a health outcome or exposure measurement of interest. Model-based geostatistics uses explicit probability models and established principles of statistical inference to address questions of this kind. Features: Presents state-of-the-art methods in model-based geostatistics. Discusses the application these methods some of the most challenging global public health problems including disease mapping, exposure mapping and environmental epidemiology. Describes exploratory methods for analysing geostatistical data, including: diagnostic checking of residuals standard linear and generalized linear models; variogram analysis; Gaussian process models and geostatistical design issues. Includes a range of more complex geostatistical problems where research is ongoing. All of the results in the book are reproducible using publicly available R code and data-sets, as well as a dedicated R package. This book has been written to be accessible not only to statisticians but also to students and researchers in the public health sciences. The Authors Peter Diggle is Distinguished University Professor of Statistics in the Faculty of Health and Medicine, Lancaster University. He also holds honorary positions at the Johns Hopkins University School of Public Health, Columbia University International Research Institute for Climate and Society, and Yale University School of Public Health. His research involves the development of statistical methods for analyzing spatial and longitudinal data and their applications in the biomedical and health sciences. Dr Emanuele Giorgi is a Lecturer in Biostatistics and member of the CHICAS research group at Lancaster University, where he formerly obtained a PhD in Statistics and Epidemiology in 2015. His research interests involve the development of novel geostatistical methods for disease mapping, with a special focus on malaria and other tropical diseases. In 2018, Dr Giorgi was awarded the Royal Statistical Society Research Prize "for outstanding published contribution at the interface of statistics and epidemiology." He is also the lead developer of PrevMap, an R package where all the methodology found in this book has been implemented.
Book Synopsis Statistical Learning with Sparsity by : Trevor Hastie
Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Book Synopsis Measuring Statistical Evidence Using Relative Belief by : Michael Evans
Download or read book Measuring Statistical Evidence Using Relative Belief written by Michael Evans and published by CRC Press. This book was released on 2015-06-23 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of recent work on developing a theory of statistical inference based on measuring statistical evidence. It attempts to establish a gold standard for how a statistical analysis should proceed. The book illustrates relative belief theory using many examples and describes the strengths and weaknesses of the theory. The author also addresses fundamental statistical issues, including the meaning of probability, the role of subjectivity, the meaning of objectivity, and the role of infinity and continuity.
Book Synopsis Introduction to High-Dimensional Statistics by : Christophe Giraud
Download or read book Introduction to High-Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2014-12-17 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians
Book Synopsis Asymptotic Analysis of Mixed Effects Models by : Jiming Jiang
Download or read book Asymptotic Analysis of Mixed Effects Models written by Jiming Jiang and published by CRC Press. This book was released on 2017-09-19 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account of asymptotic analysis of mixed effects models. The monograph is suitable for researchers and graduate students who wish to learn about asymptotic tools and research problems in mixed effects models. It may also be used as a reference book for a graduate-level course on mixed effects models, or asymptotic analysis.
Book Synopsis Stochastic Analysis for Gaussian Random Processes and Fields by : Vidyadhar S. Mandrekar
Download or read book Stochastic Analysis for Gaussian Random Processes and Fields written by Vidyadhar S. Mandrekar and published by CRC Press. This book was released on 2015-06-23 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs).The book begins with preliminary results on covariance and associated RKHS
Book Synopsis State-Space Methods for Time Series Analysis by : Jose Casals
Download or read book State-Space Methods for Time Series Analysis written by Jose Casals and published by CRC Press. This book was released on 2018-09-03 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.
Book Synopsis Robust Cluster Analysis and Variable Selection by : Gunter Ritter
Download or read book Robust Cluster Analysis and Variable Selection written by Gunter Ritter and published by CRC Press. This book was released on 2014-09-02 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. In Robust Cluster Analysis and Variable Selection, Gunter Ritter presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. The author focuses on the robust clustering methods he found to be the most useful on simulated data and real-time applications. The book provides clear guidance for the varying needs of both applications, describing scenarios in which accuracy and speed are the primary goals. Robust Cluster Analysis and Variable Selection includes all of the important theoretical details, and covers the key probabilistic models, robustness issues, optimization algorithms, validation techniques, and variable selection methods. The book illustrates the different methods with simulated data and applies them to real-world data sets that can be easily downloaded from the web. This provides you with guidance in how to use clustering methods as well as applicable procedures and algorithms without having to understand their probabilistic fundamentals.