Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Stationary Stochastic Models An Introduction
Download Stationary Stochastic Models An Introduction full books in PDF, epub, and Kindle. Read online Stationary Stochastic Models An Introduction ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Stationary Stochastic Models by : Riccardo Gatto
Download or read book Stationary Stochastic Models written by Riccardo Gatto and published by World Scientific Publishing Company. This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume provides a unified mathematical introduction to stationary time series models and to continuous time stationary stochastic processes. The analysis of these stationary models is carried out in time domain and in frequency domain. It begins with a practical discussion on stationarity, by which practical methods for obtaining stationary data are described. The presented topics are illustrated by numerous examples. Readers will find the following covered in a comprehensive manner: Autoregressive and moving average time series. Important properties such as causality. Autocovariance function and the spectral distribution of these models. Practical topics of time series like filtering and prediction. Basic concepts and definitions on the theory of stochastic processes, such as Wiener measure and process. General types of stochastic processes such as Gaussian, selfsimilar, compound and shot noise processes. Gaussian white noise, Langevin equation and Ornstein-Uhlenbeck process. Important related themes such as mean square properties of stationary processes and mean square integration. Spectral decomposition and spectral theorem of continuous time stationary processes. This central concept is followed by the theory of linear filters and their differential equations. At the end, some selected topics such as stationary random fields, simulation of Gaussian stationary processes and results of information theory are presented. A detailed appendix containing complementary materials will assist the reader with many technical aspects of the book"--
Book Synopsis Stationary Stochastic Models: An Introduction by : Riccardo Gatto
Download or read book Stationary Stochastic Models: An Introduction written by Riccardo Gatto and published by World Scientific. This book was released on 2022-06-23 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a unified mathematical introduction to stationary time series models and to continuous time stationary stochastic processes. The analysis of these stationary models is carried out in time domain and in frequency domain. It begins with a practical discussion on stationarity, by which practical methods for obtaining stationary data are described. The presented topics are illustrated by numerous examples. Readers will find the following covered in a comprehensive manner:At the end, some selected topics such as stationary random fields, simulation of Gaussian stationary processes, time series for planar directions, large deviations approximations and results of information theory are presented. A detailed appendix containing complementary materials will assist the reader with many technical aspects of the book.
Book Synopsis Stationary Stochastic Processes by : Georg Lindgren
Download or read book Stationary Stochastic Processes written by Georg Lindgren and published by CRC Press. This book was released on 2012-10-01 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.
Book Synopsis Stationary Stochastic Processes for Scientists and Engineers by : Georg Lindgren
Download or read book Stationary Stochastic Processes for Scientists and Engineers written by Georg Lindgren and published by CRC Press. This book was released on 2013-10-11 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for a one-semester course, this text teaches students how to use stochastic processes efficiently. Carefully balancing mathematical rigor and ease of exposition, the book provides students with a sufficient understanding of the theory and a practical appreciation of how it is used in real-life situations. Special emphasis is on the interpretation of various statistical models and concepts as well as the types of questions statistical analysis can answer. To enable hands-on practice, MATLAB code is available online.
Book Synopsis An Introduction to Stochastic Modeling by : Howard M. Taylor
Download or read book An Introduction to Stochastic Modeling written by Howard M. Taylor and published by Academic Press. This book was released on 2014-05-10 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Book Synopsis Introduction to Matrix Analytic Methods in Stochastic Modeling by : G. Latouche
Download or read book Introduction to Matrix Analytic Methods in Stochastic Modeling written by G. Latouche and published by SIAM. This book was released on 1999-01-01 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.
Book Synopsis Extinction and Quasi-Stationarity in the Stochastic Logistic SIS Model by : Ingemar Nåsell
Download or read book Extinction and Quasi-Stationarity in the Stochastic Logistic SIS Model written by Ingemar Nåsell and published by Springer Science & Business Media. This book was released on 2011-07-06 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents explicit approximations of the quasi-stationary distribution and of the expected time to extinction from the state one and from quasi-stationarity for the stochastic logistic SIS model. The approximations are derived separately in three different parameter regions, and then combined into a uniform approximation across all three regions. Subsequently, the results are used to derive thresholds as functions of the population size N.
Book Synopsis An Introduction to Stochastic Processes and Their Applications by : Petar Todorovic
Download or read book An Introduction to Stochastic Processes and Their Applications written by Petar Todorovic and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on stochastic processes and their applications is based on a set of lectures given during the past several years at the University of California, Santa Barbara (UCSB). It is an introductory graduate course designed for classroom purposes. Its objective is to provide graduate students of statistics with an overview of some basic methods and techniques in the theory of stochastic processes. The only prerequisites are some rudiments of measure and integration theory and an intermediate course in probability theory. There are more than 50 examples and applications and 243 problems and complements which appear at the end of each chapter. The book consists of 10 chapters. Basic concepts and definitions are pro vided in Chapter 1. This chapter also contains a number of motivating ex amples and applications illustrating the practical use of the concepts. The last five sections are devoted to topics such as separability, continuity, and measurability of random processes, which are discussed in some detail. The concept of a simple point process on R+ is introduced in Chapter 2. Using the coupling inequality and Le Cam's lemma, it is shown that if its counting function is stochastically continuous and has independent increments, the point process is Poisson. When the counting function is Markovian, the sequence of arrival times is also a Markov process. Some related topics such as independent thinning and marked point processes are also discussed. In the final section, an application of these results to flood modeling is presented.
Book Synopsis Stationary Marked Point Processes by : Karl Sigman
Download or read book Stationary Marked Point Processes written by Karl Sigman and published by Chapman and Hall/CRC. This book was released on 1995-05-15 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taking an applied point of view, this book provides an accessible introduction to the theory of stationary random marked point processes on the non-negative real line. The reader will be able to gain an intuitive understanding of stationary marked point processes and be able to apply the theory to stochastic modeling. The emphasis is on time averages and asymptotic stationarity. Proofs of the main results are given using shift-coupling methods and measure theory is kept to a minimum. Examples and exercises are given involving explicit construction of time and event stationary versions, using the 'inspection paradox' as an intuitive guide. The Rate Conservation Law is given and used in applications to queueing theory. The prerequisites are a background in probability theory and stochastic processes up to conditional expectation.
Book Synopsis Stochastic Processes by : Peter Watts Jones
Download or read book Stochastic Processes written by Peter Watts Jones and published by CRC Press. This book was released on 2017-10-30 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a well-established and popular course taught by the authors over many years, Stochastic Processes: An Introduction, Third Edition, discusses the modelling and analysis of random experiments, where processes evolve over time. The text begins with a review of relevant fundamental probability. It then covers gambling problems, random walks, and Markov chains. The authors go on to discuss random processes continuous in time, including Poisson, birth and death processes, and general population models, and present an extended discussion on the analysis of associated stationary processes in queues. The book also explores reliability and other random processes, such as branching, martingales, and simple epidemics. A new chapter describing Brownian motion, where the outcomes are continuously observed over continuous time, is included. Further applications, worked examples and problems, and biographical details have been added to this edition. Much of the text has been reworked. The appendix contains key results in probability for reference. This concise, updated book makes the material accessible, highlighting simple applications and examples. A solutions manual with fully worked answers of all end-of-chapter problems, and Mathematica® and R programs illustrating many processes discussed in the book, can be downloaded from crcpress.com.
Book Synopsis Stochastic Models with Power-Law Tails by : Dariusz Buraczewski
Download or read book Stochastic Models with Power-Law Tails written by Dariusz Buraczewski and published by Springer. This book was released on 2016-07-04 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph the authors give a systematic approach to the probabilistic properties of the fixed point equation X=AX+B. A probabilistic study of the stochastic recurrence equation X_t=A_tX_{t-1}+B_t for real- and matrix-valued random variables A_t, where (A_t,B_t) constitute an iid sequence, is provided. The classical theory for these equations, including the existence and uniqueness of a stationary solution, the tail behavior with special emphasis on power law behavior, moments and support, is presented. The authors collect recent asymptotic results on extremes, point processes, partial sums (central limit theory with special emphasis on infinite variance stable limit theory), large deviations, in the univariate and multivariate cases, and they further touch on the related topics of smoothing transforms, regularly varying sequences and random iterative systems. The text gives an introduction to the Kesten-Goldie theory for stochastic recurrence equations of the type X_t=A_tX_{t-1}+B_t. It provides the classical results of Kesten, Goldie, Guivarc'h, and others, and gives an overview of recent results on the topic. It presents the state-of-the-art results in the field of affine stochastic recurrence equations and shows relations with non-affine recursions and multivariate regular variation.
Book Synopsis Stochastic Modeling by : Barry L. Nelson
Download or read book Stochastic Modeling written by Barry L. Nelson and published by Courier Corporation. This book was released on 2012-10-11 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.
Book Synopsis Stochastic Models: Analysis and Applications by : B. R. Bhat
Download or read book Stochastic Models: Analysis and Applications written by B. R. Bhat and published by New Age International. This book was released on 2004 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Book Presents A Systematic Exposition Of The Basic Theory And Applications Of Stochastic Models.Emphasising The Modelling Rather Than Mathematical Aspects Of Stochastic Processes, The Book Bridges The Gap Between The Theory And Applications Of These Processes.The Basic Building Blocks Of Model Construction Are Explained In A Step By Step Manner, Starting From The Simplest Model Of Random Walk And Proceeding Gradually To More Complicated Models. Several Examples Are Given Throughout The Text To Illustrate Important Analytical Properties As Well As To Provide Applications.The Book Also Includes A Detailed Chapter On Inference For Stochastic Processes. This Chapter Highlights Some Of The Recent Developments In The Subject And Explains Them Through Illustrative Examples.An Important Feature Of The Book Is The Complements And Problems Section At The End Of Each Chapter Which Presents (I) Additional Properties Of The Model, (Ii) Extensions Of The Model, And (Iii) Applications Of The Model To Different Areas.With All These Features, This Is An Invaluable Text For Post-Graduate Students Of Statistics, Mathematics And Operation Research.
Book Synopsis Stochastic Processes and Long Range Dependence by : Gennady Samorodnitsky
Download or read book Stochastic Processes and Long Range Dependence written by Gennady Samorodnitsky and published by Springer. This book was released on 2016-11-09 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been published in a single self-contained volume, and can be used for a one- or two-semester graduate topics course. It is complete with helpful exercises and an appendix which describes a number of notions and results belonging to the topics used frequently throughout the book, such as topological groups and an overview of the Karamata theorems on regularly varying functions.
Book Synopsis Stochastic Processes by : Peter Watts Jones
Download or read book Stochastic Processes written by Peter Watts Jones and published by CRC Press. This book was released on 2009-10-09 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a highly popular, well-established course taught by the authors, Stochastic Processes: An Introduction, Second Edition discusses the modeling and analysis of random experiments using the theory of probability. It focuses on the way in which the results or outcomes of experiments vary and evolve over time. The text begins with a review of relevant fundamental probability. It then covers several basic gambling problems, random walks, and Markov chains. The authors go on to develop random processes continuous in time, including Poisson, birth and death processes, and general population models. While focusing on queues, they present an extended discussion on the analysis of associated stationary processes. The book also explores reliability and other random processes, such as branching processes, martingales, and a simple epidemic. The appendix contains key mathematical results for reference. Ideal for a one-semester course on stochastic processes, this concise, updated textbook makes the material accessible to students by avoiding specialized applications and instead highlighting simple applications and examples. The associated website contains Mathematica® and R programs that offer flexibility in creating graphs and performing computations.
Book Synopsis Markov Processes for Stochastic Modeling by : Oliver Ibe
Download or read book Markov Processes for Stochastic Modeling written by Oliver Ibe and published by Newnes. This book was released on 2013-05-22 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.
Book Synopsis Introduction to Stochastic Processes with R by : Robert P. Dobrow
Download or read book Introduction to Stochastic Processes with R written by Robert P. Dobrow and published by John Wiley & Sons. This book was released on 2016-03-07 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.