Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Some Aspects Of Estimation For Vector Time Series Models
Download Some Aspects Of Estimation For Vector Time Series Models full books in PDF, epub, and Kindle. Read online Some Aspects Of Estimation For Vector Time Series Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Elements of Multivariate Time Series Analysis by : Gregory C. Reinsel
Download or read book Elements of Multivariate Time Series Analysis written by Gregory C. Reinsel and published by Springer Science & Business Media. This book was released on 2003-10-31 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now available in paperback, this book introduces basic concepts and methods useful in the analysis and modeling of multivariate time series data. It concentrates on the time-domain analysis of multivariate time series, and assumes univariate time series analysis, while covering basic topics such as stationary processes and their covariance matrix structure, vector AR, MA, and ARMA models, forecasting, least squares and maximum likelihood estimation for ARMA models, associated likelihood ratio testing procedures.
Book Synopsis Multiple Time Series Models by : Patrick T. Brandt
Download or read book Multiple Time Series Models written by Patrick T. Brandt and published by SAGE. This book was released on 2007 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many analyses of time series data involve multiple, related variables. Modeling Multiple Time Series presents many specification choices and special challenges. This book reviews the main competing approaches to modeling multiple time series: simultaneous equations, ARIMA, error correction models, and vector autoregression. The text focuses on vector autoregression (VAR) models as a generalization of the other approaches mentioned. Specification, estimation, and inference using these models is discussed. The authors also review arguments for and against using multi-equation time series models. Two complete, worked examples show how VAR models can be employed. An appendix discusses software that can be used for multiple time series models and software code for replicating the examples is available. Key Features: * Offers a detailed comparison of different time series methods and approaches. * Includes a self-contained introduction to vector autoregression modeling. * Situates multiple time series modeling as a natural extension of commonly taught statistical models.
Book Synopsis Time Series Analysis Univariate and Multivariate Methods by : William W. S. Wei
Download or read book Time Series Analysis Univariate and Multivariate Methods written by William W. S. Wei and published by Pearson. This book was released on 2018-03-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.
Book Synopsis A Course in Time Series Analysis by : Daniel Peña
Download or read book A Course in Time Series Analysis written by Daniel Peña and published by John Wiley & Sons. This book was released on 2011-01-25 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include: Contributions from eleven of the worldâ??s leading figures in time series Shared balance between theory and application Exercise series sets Many real data examples Consistent style and clear, common notation in all contributions 60 helpful graphs and tables Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis. An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.
Book Synopsis Practical Time Series Analysis by : Aileen Nielsen
Download or read book Practical Time Series Analysis written by Aileen Nielsen and published by O'Reilly Media. This book was released on 2019-09-20 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
Book Synopsis Structural Vector Autoregressive Analysis by : Lutz Kilian
Download or read book Structural Vector Autoregressive Analysis written by Lutz Kilian and published by Cambridge University Press. This book was released on 2017-11-23 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the econometric foundations of structural vector autoregressive modeling, as used in empirical macroeconomics, finance, and related fields.
Book Synopsis Elements of Multivariate Time Series Analysis by : Gregory C. Reinsel
Download or read book Elements of Multivariate Time Series Analysis written by Gregory C. Reinsel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of methods of time series analysis in the study of multivariate time series has become of increased interest in recent years. Although the methods are rather well developed and understood for univarjate time series analysis, the situation is not so complete for the multivariate case. This book is designed to introduce the basic concepts and methods that are useful in the analysis and modeling of multivariate time series, with illustrations of these basic ideas. The development includes both traditional topics such as autocovariance and auto correlation matrices of stationary processes, properties of vector ARMA models, forecasting ARMA processes, least squares and maximum likelihood estimation techniques for vector AR and ARMA models, and model checking diagnostics for residuals, as well as topics of more recent interest for vector ARMA models such as reduced rank structure, structural indices, scalar component models, canonical correlation analyses for vector time series, multivariate unit-root models and cointegration structure, and state-space models and Kalman filtering techniques and applications. This book concentrates on the time-domain analysis of multivariate time series, and the important subject of spectral analysis is not considered here. For that topic, the reader is referred to the excellent books by Jenkins and Watts (1968), Hannan (1970), Priestley (1981), and others.
Book Synopsis Forecasting: principles and practice by : Rob J Hyndman
Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Download or read book COMPSTAT written by Albert Prat and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMPSTAT symposia have been held regularly since 1974 when they started in Vienna. This tradition has made COMPSTAT a major forum for the interplay of statistics and computer sciences with contributions from many well known scientists all over the world. The scientific programme of COMPSTAT '96 covers all aspects of this interplay, from user-experiences and evaluation of software through the development and implementation of new statistical ideas. All papers presented belong to one of the three following categories: - Statistical methods (preferable new ones) that require a substantial use of computing; - Computer environments, tools and software useful in statistics; - Applications of computational statistics in areas of substantial interest (environment, health, industry, biometrics, etc.).
Book Synopsis Introduction to Multiple Time Series Analysis by : Helmut Lütkepohl
Download or read book Introduction to Multiple Time Series Analysis written by Helmut Lütkepohl and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Time Series Models written by D.R. Cox and published by CRC Press. This book was released on 2020-11-26 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis prediction and interpolation of economic and other time series has a long history and many applications. Major new developments are taking place, driven partly by the need to analyze financial data. The five papers in this book describe those new developments from various viewpoints and are intended to be an introduction accessible to readers from a range of backgrounds. The book arises out of the second Seminaire European de Statistique (SEMSTAT) held in Oxford in December 1994. This brought together young statisticians from across Europe, and a series of introductory lectures were given on topics at the forefront of current research activity. The lectures form the basis for the five papers contained in the book. The papers by Shephard and Johansen deal respectively with time series models for volatility, i.e. variance heterogeneity, and with cointegration. Clements and Hendry analyze the nature of prediction errors. A complementary review paper by Laird gives a biometrical view of the analysis of short time series. Finally Astrup and Nielsen give a mathematical introduction to the study of option pricing. Whilst the book draws its primary motivation from financial series and from multivariate econometric modelling, the applications are potentially much broader.
Book Synopsis Handbook of Economic Forecasting by : G. Elliott
Download or read book Handbook of Economic Forecasting written by G. Elliott and published by Elsevier. This book was released on 2006-07-14 with total page 1071 pages. Available in PDF, EPUB and Kindle. Book excerpt: Section headings in this handbook include: 'Forecasting Methodology; 'Forecasting Models'; 'Forecasting with Different Data Structures'; and 'Applications of Forecasting Methods.'.
Book Synopsis Modeling Financial Time Series with S-PLUS by : Eric Zivot
Download or read book Modeling Financial Time Series with S-PLUS written by Eric Zivot and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.
Book Synopsis Festschrift for Lucien Le Cam by : David Pollard
Download or read book Festschrift for Lucien Le Cam written by David Pollard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contributed in honour of Lucien Le Cam on the occasion of his 70th birthday, the papers reflect the immense influence that his work has had on modern statistics. They include discussions of his seminal ideas, historical perspectives, and contributions to current research - spanning two centuries with a new translation of a paper of Daniel Bernoulli. The volume begins with a paper by Aalen, which describes Le Cams role in the founding of the martingale analysis of point processes, and ends with one by Yu, exploring the position of just one of Le Cams ideas in modern semiparametric theory. The other 27 papers touch on areas such as local asymptotic normality, contiguity, efficiency, admissibility, minimaxity, empirical process theory, and biological medical, and meteorological applications - where Le Cams insights have laid the foundations for new theories.
Book Synopsis Statistical Learning with Sparsity by : Trevor Hastie
Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Book Synopsis Elements of Nonlinear Time Series Analysis and Forecasting by : Jan G. De Gooijer
Download or read book Elements of Nonlinear Time Series Analysis and Forecasting written by Jan G. De Gooijer and published by Springer. This book was released on 2017-03-30 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Book Synopsis New Introduction to Multiple Time Series Analysis by : Helmut Lütkepohl
Download or read book New Introduction to Multiple Time Series Analysis written by Helmut Lütkepohl and published by Springer Science & Business Media. This book was released on 2007-07-26 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the new and totally revised edition of Lütkepohl’s classic 1991 work. It provides a detailed introduction to the main steps of analyzing multiple time series, model specification, estimation, model checking, and for using the models for economic analysis and forecasting. The book now includes new chapters on cointegration analysis, structural vector autoregressions, cointegrated VARMA processes and multivariate ARCH models. The book bridges the gap to the difficult technical literature on the topic. It is accessible to graduate students in business and economics. In addition, multiple time series courses in other fields such as statistics and engineering may be based on it.