Quantum Memory Protocols for Photonic Solid-state Devices

Download Quantum Memory Protocols for Photonic Solid-state Devices PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 159 pages
Book Rating : 4.:/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Quantum Memory Protocols for Photonic Solid-state Devices by : Kutlu Kutluer

Download or read book Quantum Memory Protocols for Photonic Solid-state Devices written by Kutlu Kutluer and published by . This book was released on 2018 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: A photonic quantum memory (QM) is a device that has the capability of storing a quantum state of light and retrieving back after a controlled time. It is an important element in quantum information science and is, among other applications, a crucial device for quantum repeater architectures which have been proposed to overcome the loss and the decoherence issues in long distance transmission of photons. Rare earth ion doped solid state systems are promising candidates for QMs which combine the advantages of solid state systems, such as scalability and reduced experimental complexity, with the long coherence time typically found in atomic systems. In this thesis, I investigated three different QM protocols in a Pr3+:Y2SiO5 crystal. The first part describes here the first demonstration of the spectral hole memory (SHoMe) protocol which was proposed theoretically in 2009. This protocol relies on slowing down the light in a long-lived spectral hole and transferring the excitations to the spin state. We first prepare a spectral hole, then send an input pulse whose bandwidth is comparable with the hole and stop the compressed light in the crystal by transferring the off-resonant coherence to the spin state with an optical p pulse. Later a second p pulse transfers the coherence back and leads to the emission of the stored light. We reached a storage and retrieval efficiency of around 40% in the classical regime, and of 31% in the single photon level, with a signal-to-noise ratio of 33 ± 4 for a mean input photon number of 1. These results demonstrate the most efficient and noiseless spin-wave solid-state optical memory at the single photon level to date. The second part of the thesis describes new experiments using the well-known atomic frequency comb (AFC) protocol. It is based on tailoring the inhomogeneously broadened absorption profile of the rare earth with periodic absorptive peaks, which induces the re-emission of the absorbed light field after a certain time determined by the separation between the peaks. In this chapter I describe several AFC experiments. First I present the storage of frequency converted telecom photons into our crystal where we obtained a total efficiency of 1.9 ± 0.2 % for a storage time of 1.6 μs storage time and signal-to-noise ratio of more than 200 for a mean input photon number of 1. Then I discuss the results of improved excited state storage efficiency values for long storage times where we achieved 30% at short storage times and up to 17% at 10 μs storage time. And finally I present a spin-wave AFC experiment where we obtained a signal-to-noise ratio value of 28 ± 8 for a mean input photon number of 1, the highest value achieved so far for this kind of experiment. Finally, in the last part, I describe the first demonstration of a solid-state photon pair source with embedded multimode quantum memory. The aim of the protocol is to combine a single photon source and a QM in one ensemble as in the well-known Duan-Lukin-Zoller-Cirac (DLCZ) scheme however this time not in a cold atomic ensemble but in a solid-state crystal. The protocol takes advantage of the AFC protocol for rephasing the ions and obtaining efficient read-out. The use of AFC also makes the protocol temporally multi-mode. In the experiment, after the AFC preparation we send an on-resonant write pulse and detect the decayed Stokes photons which herald single spin excitations. At a later time a read pulse transfers the spin excitation back to the excited state and we detect the anti-Stokes photons. We show strong non-classical second order cross-correlations between the Stokes and anti-Stokes photons and demonstrate storage of 11 temporal modes. The results presented in this thesis represent a significant contribution to the field of solid-state quantum memories and an important steps towards the realization of scalable quantum network architectures with solid state systems.

A Multimode Solid-state Quantum Memory for Single Photons

Download A Multimode Solid-state Quantum Memory for Single Photons PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (122 download)

DOWNLOAD NOW!


Book Synopsis A Multimode Solid-state Quantum Memory for Single Photons by : Alessando Seri

Download or read book A Multimode Solid-state Quantum Memory for Single Photons written by Alessando Seri and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum memories (QMs) for light represent a fundamental ingredient for the development of a quantum internet. Among other applications, they are a building block for the distribution of entanglement on large scale, i.e. for the realization of a quantum repeater architecture. Rare earth doped crystals (REDCs) are a promising candidate towards this goal. In my thesis I use a Pr3+:Y2SiO5 crystal. The longest storage time and the highest retrieval efficiency for a solid-state memory measured so far, were demonstrated with this system (in the classical regime). However, the main advantages of solid-state platforms are their suitability for miniaturization and integration as well as their inhomogeneous broadening, which enables broadband storage and spectral multiplexing. In this thesis we demonstrate an on-demand solid-state QM for real single photons. Moreover we study new platforms for integrated QM based on the same material. We employ the atomic frequency comb (AFC) technique, which is the most promising storage protocol in terms of temporal multiplexing up to now. Until the start of my PhD there was still no demonstration of storage of a real quantum state of light with an on-demand readout in REDCs. We achieved this in the course of this thesis, measuring also for the first time (and only, at the time of writing) non-classical correlation between a single spin wave in a solid-state QM and a telecom photon. After proving the suitability of Pr3+:Y2SiO5 crystals for on-demand QMs, we demonstrated novel types of integrated optical memories based on the same system. We studied the spectroscopic and coherence properties of the ions in laser-written waveguides fabricated by fs-laser micromachining. These projects were developed in collaboration with Dr. R. Osellame and Dr. G. Corrielli at Politecnico di Milano, who fabricated the waveguides and analysed their guiding properties. In a first kind of waveguide, called type II, we performed the first storage with on-demand retrieval ever done in solid-state integrated optical memories (with classical light). We continued analysing a so-called type I waveguide, in which the mode-size is comparable with the mode guided in a single-mode fiber at the same wavelength. Here we showed storage of heralded single-photons for a pre-programmed time. The demonstrated storage time, 5.5 μs, is the longest quantum storage demonstrated in any integrated waveguide up to now. Finally, we performed in the same waveguide storage of the whole spectrum of a frequency-multiplexed heralded photon, spanning a range of frequencies of ̃ 4 GHz. The photon is naturally multiplexed due to the generation method used, namely cavity-enhanced SPDC. The possibility of storing such a broad spectrum comes from the intrinsic inhomogeneous broadening present in REDCs. Together with the 15 frequency modes constituting the multiplexed photon, 9 temporal modes were stored thanks to the intrinsic temporal multimodality of the AFC protocol. The method used to fabricate our waveguides, fs-laser micromachining, is the only one to our knowledge that allows for direct 3D fabrication in the substrate. In the future, this will yield matrices of fiber-pigtailed waveguide-based QMs, thus enabling a high degree of spatial multiplexing, which nowadays is mostly exploited in atomic clouds, where temporal and spectral multiplexing are more difficult to achieve. The crystal, the protocol and the waveguide fabrication technique employed in this thesis, represent all together a very promising system, opening the way for a future quantum repeater architecture based on scalable highly multiplexed QMs.

Solid-state Quantum Memory for Photonic Qubits

Download Solid-state Quantum Memory for Photonic Qubits PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 202 pages
Book Rating : 4.:/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Solid-state Quantum Memory for Photonic Qubits by : Mustafa Gündoğan

Download or read book Solid-state Quantum Memory for Photonic Qubits written by Mustafa Gündoğan and published by . This book was released on 2015 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Les memòries quàntiques òptiques (MQs) son un dels elements fonamentals en la ciència de la informació quàntica (CIQ). El seu ús podria ser important en aplicacions relacionades amb la comunicació i la computació quàntiques. Els ions de terres rares (ITRs) han sigut investigats durant dècades per les seves propietats òptiques. Exhibeixen excel·lents propietats de coherència quan es refreden a temperatures criogèniques. Per tant, no es sorprenent que hagin emergit com a candidats per ser usats en la CIQ com a MQs. En aquesta tesis, hem investigat l'emmagatzematge quàntic de qubits fotònics en un cristall de Pr3+:Y2SiO5 (PrYSO) per al seu possible ús en aplicacions relacionades amb xarxes d'informació quàntiques. Vam començar construint el dispositiu experimental i sistemes làser des de zero, ja que el nostre grup de recerca acabava de néixer. Els primers experiments van incloure espectroscòpia del sistema de PrYSO per identificar les transicions electròniques més apropiades per als següents experiments de MQs. En tots els experiments vam utilitzar el protocol de memòria basat en una pinta de freqüències atòmiques (PFA). També vam desenvolupar complexes seqüències de polsos, necessàries per a la preparació òptica d'una PFA. En el primer experiment vam demostrar l'emmagatzematge de qubits fotònics de polarització codificats en estats coherents febles. Aquest emmagatzematge es va dur a terme en els estats excitats dels ions Pr3+ durant un temps d'emmagatzematge predeterminat de 500 ns. Aquesta fita no s'havia assolit abans degut a que l'absorció òptica del material depèn de la polarització llum. Vam aconseguir fidelitats d'emmagatzematge d'un 95% de mitjana les quals sobrepassen el millor valor que es pot aconseguir amb una estratègia de mesura i preparació provant per tant el caràcter quàntic de la nostra interfície. Per poder-se implementar de manera realista en xarxes quàntiques, una MQ hauria de tenir la capacitat de recuperar la informació en-demanda (en el moment que es desitgi). Com a primer pas, el nostre següent experiment va involucrar la transferència dels polsos d'entrada cap a i des de els nivells fonamentals hiperfins i longeus dels ions Pr3+, mitjançant polsos brillants. A més, duent a terme experiments d'interferència, vam demostrar que la coherència es preserva durant els processos d'emmagatzematge, transferència i recuperació. També vam demostrar l'emmagatzematge temporalment multimodal en els estats d'espín, de fins a 5 modes. En l'última part d'aquesta tesis vam demostrar una memòria quàntica d'estat sòlid basada en ones d'espín, amb qubits codificats en estats coherents febles al nivell d'intensitat de fotons individuals. Emmagatzemar i recuperar camps òptics al nivell de fotons individuals en estats fonamentals del sistema PrYSO és exigent perquè els potents polsos de control i el polsos dèbils d'entrada que s'emmagatzemen a la memòria estan separats per només 10.2 MHz. Els polsos de control creen soroll, la majoria consistent en decaïment de lliure inducció, fluorescència i dispersió en les superfícies òptiques. Per resoldre aquest problema vam utilitzar filtratge estret de banda en freqüència i també filtratges temporal i espacial. Utilitzant un filtre estret de banda basat el la crema de forats espectrals en un segon cristall de PrYSO, vam poder aconseguir una relació senyal soroll (RSS) > 10 per a polsos d'entrada amb un número mitjà de fotons al voltant de 1. L'alta RSS que vam aconseguir ens va permetre emmagatzemar i recuperar qubits de inteval-de-temps amb fidelitats condicionals més altes una altra vegada que el que és possible amb l'estratègia de mesura i preparació. Els resultats presentats omplen un buit important en el camp de les memòries quàntiques d'estat sòlid i obren la porta a l'emmagatzematge de llarga durada d'estats de llum no-clàssics. A més, enforteixen la posició dels sistemes de IQ basats en ITR, específicament com a nodes en arquitectures de xarxes quàntiques.

Quantum Computing in Solid State Systems

Download Quantum Computing in Solid State Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387311432
Total Pages : 337 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Quantum Computing in Solid State Systems by : Berardo Ruggiero

Download or read book Quantum Computing in Solid State Systems written by Berardo Ruggiero and published by Springer Science & Business Media. This book was released on 2006-05-30 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing for information processing devices; in particular observations of quantum behavior in several solid state systems are presented. The complementary theoretical contributions provide models of minimizing decoherence in the different systems. Most recent theoretical and experimental results on macroscopic quantum coherence of mesoscopic systems, as well as the realization of solid-state qubits and quantum gates are discussed. Particular attention is given to coherence effects in Josephson devices. Other solid state systems---including quantum dots, optical, ion, and spin devices---are also discussed.

Towards Solid-State Quantum Repeaters

Download Towards Solid-State Quantum Repeaters PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3319000748
Total Pages : 159 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Towards Solid-State Quantum Repeaters by : Kristiaan De Greve

Download or read book Towards Solid-State Quantum Repeaters written by Kristiaan De Greve and published by Springer Science & Business Media. This book was released on 2013-04-16 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Towards Solid-State Quantum Repeaters: Ultrafast, Coherent Optical Control and Spin-Photon Entanglement in Charged InAs Quantum Dots summarizes several state-of-the-art coherent spin manipulation experiments in III-V quantum dots. Both high-fidelity optical manipulation, decoherence due to nuclear spins and the spin coherence extraction are discussed, as is the generation of entanglement between a single spin qubit and a photonic qubit. The experimental results are analyzed and discussed in the context of future quantum technologies, such as quantum repeaters. Single spins in optically active semiconductor host materials have emerged as leading candidates for quantum information processing (QIP). The quantum nature of the spin allows for encoding of stationary, memory quantum bits (qubits), and the relatively weak interaction with the host material preserves the spin coherence. On the other hand, optically active host materials permit direct interfacing with light, which can be used for all-optical qubit manipulation, and for efficiently mapping matter qubits into photonic qubits that are suited for long-distance quantum communication.

A Scalable Quantum Computation Platform

Download A Scalable Quantum Computation Platform PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 107 pages
Book Rating : 4.:/5 (15 download)

DOWNLOAD NOW!


Book Synopsis A Scalable Quantum Computation Platform by : Sara Lambert Mouradian

Download or read book A Scalable Quantum Computation Platform written by Sara Lambert Mouradian and published by . This book was released on 2018 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computation and communication systems exploit quantum mechanical effects to surpass their classical counterparts in certain applications. However, while proof-of-principle experimental demonstrations have been performed, these are limited to a handful of nodes with limited - and often immutable - connectivity. Here we demonstrate an integrated platform for solid state quantum information processing. Pre-characterized solid state quantum nodes (nitrogen vacancy centers in diamond nanophotonic structures) are placed into a photonic integrated circuit which allows for low-loss and phase-stable collection, routing, and detection of photons as well as on-chip state manipulation and classical control. Moreover, the fabrication of high-quality photonic resonators in diamond allows for the increased emission and collection rates of photons coherent with the spin state. These two advances promise an on-chip entanglement rate much larger than the decoherence rate, allowing the creation and maintenance of cluster states for quantum computation.

Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits

Download Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319215728
Total Pages : 240 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits by : Cécile Grèzes

Download or read book Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits written by Cécile Grèzes and published by Springer. This book was released on 2015-08-19 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work describes theoretical and experimental advances towards the realization of a hybrid quantum processor in which the collective degrees of freedom of an ensemble of spins in a crystal are used as a multi-qubit register for superconducting qubits. A memory protocol made of write, read and reset operations is first presented, followed by the demonstration of building blocks of its implementation with NV center spins in diamond. Qubit states are written by resonant absorption of a microwave photon in the spin ensemble and read out of the memory on-demand by applying Hahn echo refocusing techniques to the spins. The reset step is implemented in between two successive write-read sequences using optical repumping of the spins.

Quantum Light Source Compatible with Solid-state Quantum Memories and Telecom Networks

Download Quantum Light Source Compatible with Solid-state Quantum Memories and Telecom Networks PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 152 pages
Book Rating : 4.:/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Quantum Light Source Compatible with Solid-state Quantum Memories and Telecom Networks by : Daniel Rieländer

Download or read book Quantum Light Source Compatible with Solid-state Quantum Memories and Telecom Networks written by Daniel Rieländer and published by . This book was released on 2017 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This PhD thesis is in the scope of experimental quantum communication. It deals with correlated photon pairs of which one photon is stored in a solid state device, while the other photon is at telecom wavelength. Quantum correlation between a photon at telecom wavelength and a photon stored in a quantum memory is an important resource for future applications like quantum repeaters, allowing the transmission quantum states over long distances. During the first part of this thesis, a novel photon pair source has been developed, based on spontaneous parametric downconversion (SPDC) inside a bow-tie cavity. SPDC is a non-linear process which splits a pump photon sporadically into two correlated photons, called signal and idler photon. The source used in this work has been designed to be compatible with a solid state quantum memory based on a Praseodymium doped crystal, using the atomic frequency comp (AFC) protocol. This material has shown promising properties for classical light storage. However, it features a small storage bandwidth of 4 MHz at 606 nm, which sets stringent requirements for the photons to be stored. To match these requirements the SPDC process takes place inside a bowtie cavity which is resonant with the created signal and idler photons. The difference between storage wavelength and telecom wavelength (1436 nm in our case) leads to widely non-degenerate photon pairs. These double resonance leads to a strong clustering effect, which suppresses a high number of redundant spectral modes. The created photon spectrum is investigated carefully and consists of three clusters with few well separated modes. The width of each mode is around 2 MHz and matches the requirement for the quantum memory. Single mode operation was achieved by placing an additional Fabry-Perot cavity in the idler field at 1436 nm. This resulted in the demonstration of the narrowest photon pairs consisting of a spectral single mode, created by SPDC to date. In the second part of the thesis, heralded single photons at 606 nm were created by the detection of a photon at 1436 nm. These heralded photons were then stored as collective optical excitations in a praseodymium crystal, using the AFC scheme. Non-classical correlation between the heralding photon and the stored and retrieved photons were observed for storage time up to 4 μs, 20 times longer than achieved in previous solid state quantum memory experiments. Further development on the source, led to improved results, including an increase of coincidence count rate by one order of magnitude and a heralding efficiency of 28 %. The single photon nature of the heralded photon was also measured directly by showing strong antibunching of the 606 nm signal field. These improvements made the created photons compatible with the storage in the spin state of the praseodymium level scheme, using the full AFC protocol. That enabled an extended storage time of 11 μs with on demand readout of the stored photon. The last part of the thesis explores another important resource for the distribution of quantum states with a quantum repeater, entanglement between the created photon pairs. Here we show a rather new approach of entanglement, which is well suited for narrow band photons based on frequency bins. We take advantage of the fact that the source naturally creates several energy correlated well separated frequency modes. In order to show the coherent superposition of the frequency modes, we use electro-optical modulators to coherently mix them. We could show high-visibility two-photon interference fringes, a strong indicator for entanglement in the frequency domain. The results presented in this thesis open the door for the demonstration of entanglement between a solid-state spin-wave quantum memory and a photon at telecom wavelength. This represents an important step for the realization of quantum repeaters using solid state resources.

A Telecom-Compatible Quantum Memory in the Solid-State: Single Erbium Ions Coupled to Silicon Nanophotonic Circuits

Download A Telecom-Compatible Quantum Memory in the Solid-State: Single Erbium Ions Coupled to Silicon Nanophotonic Circuits PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.5/5 (152 download)

DOWNLOAD NOW!


Book Synopsis A Telecom-Compatible Quantum Memory in the Solid-State: Single Erbium Ions Coupled to Silicon Nanophotonic Circuits by : Mouktik Raha

Download or read book A Telecom-Compatible Quantum Memory in the Solid-State: Single Erbium Ions Coupled to Silicon Nanophotonic Circuits written by Mouktik Raha and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Single atoms and atom-like defects in solids are promising platforms for realizing single photon sources and long-lived quantum memories, which are essential ingredients for the development of long-distance quantum networks. However, most atomic transitions are in the ultraviolet-NIR regions with wavelengths shorter than 1 μm, where propagation losses in optical fibers are prohibitively large. A notable exception is erbium ion, whose optical transition at 1.5 μm is in the "telecom band", allowing minimal fiber transmission losses. Isolating and addressing individual erbium ions using an optical interface have been elusive so far because of the poor emission rate of erbium due to the electric dipole-forbidden nature of its intra-4f optical transition. We report the observation of fluorescence from single erbium ions for the first time. We achieve this by integrating erbium ions in a low loss, small mode-volume silicon nanophotonic cavity and enhancing their emission rate by over two orders of magnitude.A crucial component of optically interfaced solid-state defects-based platforms is high-fidelity, projective measurement of the spin state, which is generally accomplished using fluorescence on an optical cycling transition. We demonstrate that the cavity modifies the local electromagnetic environment of an erbium ion (which otherwise lacks strong cycling transitions) and improves its cyclicity by greater than 100-fold, thus enabling high-fidelity single-shot quantum nondemolition readout of the ion's spin. We also identify dozens of spectrally distinct ions coupled to the same cavity. Combining an optical frequency-domain multiplexing technique and microwave rotations, we individually initialize, manipulate, and perform single-shot spin measurement of six such ions. Our approach is not limited by the spatial separation between individual ions and is readily scalable to tens or hundreds of ions.Finally, we demonstrate coherent coupling of an erbium electronic spin to a nearby nuclear spin and implement single-qubit and two-qubit gates on them, thus extending our platform's prowess as a quantum memory by making a long-lived nuclear spin register available for storage and retrieval of information. These results are a significant step towards realizing long-distance quantum networks by utilizing multiplexed quantum repeater protocols and deterministic quantum logic for photons based on a scalable silicon nanophotonics architecture.

Photonic Quantum Technologies

Download Photonic Quantum Technologies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527837434
Total Pages : 910 pages
Book Rating : 4.5/5 (278 download)

DOWNLOAD NOW!


Book Synopsis Photonic Quantum Technologies by : Mohamed Benyoucef

Download or read book Photonic Quantum Technologies written by Mohamed Benyoucef and published by John Wiley & Sons. This book was released on 2023-05-04 with total page 910 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic Quantum Technologies Brings together top-level research results to enable the development of practical quantum devices In Photonic Quantum Technologies: Science and Applications, the editor Mohamed Benyoucef and a team of distinguished scientists from different disciplines deliver an authoritative, one-stop overview of up-to-date research on various quantum systems. This unique book reviews the state-of-the-art research in photonic quantum technologies and bridges the fundamentals of the field with applications to provide readers from academia and industry, in one-location resource, with cutting-edge knowledge they need to have to understand and develop practical quantum systems for application in e.g., secure quantum communication, quantum metrology, and quantum computing. The book also addresses fundamental and engineering challenges en route to workable quantum devices and ways to circumvent or overcome them. Readers will also find: A thorough introduction to the fundamentals of quantum technologies, including discussions of the second quantum revolution (by Nobel Laureate Alain Aspect), solid-state quantum optics, and non-classical light and quantum entanglement Comprehensive explorations of emerging quantum technologies and their practical applications, including quantum repeaters, satellite-based quantum communication, quantum networks, silicon quantum photonics, integrated quantum systems, and future vision Practical discussions of quantum technologies with artificial atoms, color centers, 2D materials, molecules, atoms, ions, and optical clocks Perfect for molecular and solid-state physicists, Photonic Quantum Technologies: Science and Applications will also benefit industrial and academic researchers in photonics and quantum optics, graduate students in the field; engineers, chemists, and computer and material scientists.

Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles

Download Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811074763
Total Pages : 136 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles by : Dong-Sheng Ding

Download or read book Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles written by Dong-Sheng Ding and published by Springer. This book was released on 2017-12-26 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents an experimental study of quantum memory based on cold atomic ensembles and discusses photonic entanglement. It mainly focuses on experimental research on storing orbital angular momentum, and introduces readers to methods for storing a single photon carried by an image or an entanglement of spatial modes. The thesis also discusses the storage of photonic entanglement using the Raman scheme as a step toward implementing high-bandwidth quantum memory. The storage of photonic entanglement is central to achieving long-distance quantum communication based on quantum repeaters and scalable linear optical quantum computation. Addressing this key issue, the findings presented in the thesis are very promising with regard to future high-speed and high-capacity quantum communications.

Solid-state Optical Quantum Memory

Download Solid-state Optical Quantum Memory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 63 pages
Book Rating : 4.:/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Solid-state Optical Quantum Memory by : Peter Clemens Strassmann

Download or read book Solid-state Optical Quantum Memory written by Peter Clemens Strassmann and published by . This book was released on 2019 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Engineering the Atom-Photon Interaction

Download Engineering the Atom-Photon Interaction PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319192310
Total Pages : 410 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Engineering the Atom-Photon Interaction by : Ana Predojević

Download or read book Engineering the Atom-Photon Interaction written by Ana Predojević and published by Springer. This book was released on 2015-07-16 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive view of the contemporary methods for quantum-light engineering. In particular, it addresses different technological branches and therefore allows the reader to quickly identify the best technology - application match. Non-classical light is a versatile tool, proven to be an intrinsic part of various quantum technologies. Its historical significance has made it the subject of many text books written both from theoretical and experimental point of view. This book takes another perspective by giving an insight to modern technologies used to generate and manipulate quantum light.

Exploring Storage Capability of a Solid-state Quantum Memory for Light

Download Exploring Storage Capability of a Solid-state Quantum Memory for Light PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 219 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Exploring Storage Capability of a Solid-state Quantum Memory for Light by : Alexey Tiranov

Download or read book Exploring Storage Capability of a Solid-state Quantum Memory for Light written by Alexey Tiranov and published by . This book was released on 2016 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Quantum Computing

Download Quantum Computing PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 030947969X
Total Pages : 273 pages
Book Rating : 4.3/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Quantum Computing by : National Academies of Sciences, Engineering, and Medicine

Download or read book Quantum Computing written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Techniques for Deployed Quantum Networks with Solid-state Defect Centers

Download Techniques for Deployed Quantum Networks with Solid-state Defect Centers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (139 download)

DOWNLOAD NOW!


Book Synopsis Techniques for Deployed Quantum Networks with Solid-state Defect Centers by : Eric Bersin

Download or read book Techniques for Deployed Quantum Networks with Solid-state Defect Centers written by Eric Bersin and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen tremendous progress towards the development of quantum networks, wherein quantum states are transmitted over long distances for applications in distributed quantum computing, quantum-enhanced metrology, and quantum key distribution. In particular, recent results have demonstrated the fundamental building blocks of "quantum repeaters" --- network nodes containing quantum memories that can store, process, and retransmit photonic qubits. Such repeaters are key to deploying scalable quantum networks that can realize the full range of quantum networking applications. However, work in this area has typically been confined to small numbers of low-yield devices, operating in single laboratory environments. Moving from delicate, proof-of-principle physics experiments to robust, practical systems requires advancements on a number of fronts, ranging from fundamental materials science and qubit development to high-level quantum-compatible communications infrastructures. Here, we pursue a full-stack approach towards deployable quantum networks, specifically with solid-state defect centers as quantum memories. We investigate single qubit registers, studying creation techniques and multi-spin architectures that might enhance qubit performance. Next, we propose architectures at the device and repeater levels for improving the ability of a network to take advantage of high-performance qubits. Finally, we develop the classical infrastructure necessary for realizing quantum networks across real-world fiber links, concluding with a demonstration of photon-to-spin quantum state transfer across a 50 km deployed network in the Boston area. Together, these efforts represent a significant step in realizing scalable, memory-enabled quantum networks.

Quantum Photonics: Pioneering Advances and Emerging Applications

Download Quantum Photonics: Pioneering Advances and Emerging Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319984020
Total Pages : 646 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Quantum Photonics: Pioneering Advances and Emerging Applications by : Robert W. Boyd

Download or read book Quantum Photonics: Pioneering Advances and Emerging Applications written by Robert W. Boyd and published by Springer. This book was released on 2019-02-19 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together reviews by internationally renowed experts on quantum optics and photonics. It describes novel experiments at the limit of single photons, and presents advances in this emerging research area. It also includes reprints and historical descriptions of some of the first pioneering experiments at a single-photon level and nonlinear optics, performed before the inception of lasers and modern light detectors, often with the human eye serving as a single-photon detector. The book comprises 19 chapters, 10 of which describe modern quantum photonics results, including single-photon sources, direct measurement of the photon's spatial wave function, nonlinear interactions and non-classical light, nanophotonics for room-temperature single-photon sources, time-multiplexed methods for optical quantum information processing, the role of photon statistics in visual perception, light-by-light coherent control using metamaterials, nonlinear nanoplasmonics, nonlinear polarization optics, and ultrafast nonlinear optics in the mid-infrared.