Smooth Ergodic Theory of Random Dynamical Systems

Download Smooth Ergodic Theory of Random Dynamical Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540492917
Total Pages : 233 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Smooth Ergodic Theory of Random Dynamical Systems by : Pei-Dong Liu

Download or read book Smooth Ergodic Theory of Random Dynamical Systems written by Pei-Dong Liu and published by Springer. This book was released on 2006-11-14 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies ergodic-theoretic aspects of random dynam- ical systems, i.e. of deterministic systems with noise. It aims to present a systematic treatment of a series of recent results concerning invariant measures, entropy and Lyapunov exponents of such systems, and can be viewed as an update of Kifer's book. An entropy formula of Pesin's type occupies the central part. The introduction of relation numbers (ch.2) is original and most methods involved in the book are canonical in dynamical systems or measure theory. The book is intended for people interested in noise-perturbed dynam- ical systems, and can pave the way to further study of the subject. Reasonable knowledge of differential geometry, measure theory, ergodic theory, dynamical systems and preferably random processes is assumed.

Random Dynamical Systems

Download Random Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662128780
Total Pages : 590 pages
Book Rating : 4.6/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Random Dynamical Systems by : Ludwig Arnold

Download or read book Random Dynamical Systems written by Ludwig Arnold and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.

Smooth Ergodic Theory of Random Dynamical Systems

Download Smooth Ergodic Theory of Random Dynamical Systems PDF Online Free

Author :
Publisher :
ISBN 13 : 9783662200193
Total Pages : 240 pages
Book Rating : 4.2/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Smooth Ergodic Theory of Random Dynamical Systems by : Pei-Dong Liu

Download or read book Smooth Ergodic Theory of Random Dynamical Systems written by Pei-Dong Liu and published by . This book was released on 2014-01-15 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Ergodic Theory of Random Transformations

Download Ergodic Theory of Random Transformations PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 9781468491777
Total Pages : 210 pages
Book Rating : 4.4/5 (917 download)

DOWNLOAD NOW!


Book Synopsis Ergodic Theory of Random Transformations by : Yuri Kifer

Download or read book Ergodic Theory of Random Transformations written by Yuri Kifer and published by Birkhäuser. This book was released on 2012-06-02 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transforma tions chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. 'Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations.

Introduction to Smooth Ergodic Theory

Download Introduction to Smooth Ergodic Theory PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470470659
Total Pages : 355 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Smooth Ergodic Theory by : Luís Barreira

Download or read book Introduction to Smooth Ergodic Theory written by Luís Barreira and published by American Mathematical Society. This book was released on 2023-05-19 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.

Topological Dynamics of Random Dynamical Systems

Download Topological Dynamics of Random Dynamical Systems PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 9780198501572
Total Pages : 216 pages
Book Rating : 4.5/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Topological Dynamics of Random Dynamical Systems by : Nguyen Dinh Cong

Download or read book Topological Dynamics of Random Dynamical Systems written by Nguyen Dinh Cong and published by Oxford University Press. This book was released on 1997 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first systematic treatment of the theory of topological dynamics of random dynamical systems. A relatively new field, the theory of random dynamical systems unites and develops the classical deterministic theory of dynamical systems and probability theory, finding numerous applications in disciplines ranging from physics and biology to engineering, finance and economics. This book presents in detail the solutions to the most fundamental problems of topological dynamics: linearization of nonlinear smooth systems, classification, and structural stability of linear hyperbolic systems. Employing the tools and methods of algebraic ergodic theory, the theory presented in the book has surprisingly beautiful results showing the richness of random dynamical systems as well as giving a gentle generalization of the classical deterministic theory.

Mathematics of Complexity and Dynamical Systems

Download Mathematics of Complexity and Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461418054
Total Pages : 1885 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Mathematics of Complexity and Dynamical Systems by : Robert A. Meyers

Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

A Dynamical Approach to Random Matrix Theory

Download A Dynamical Approach to Random Matrix Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470436485
Total Pages : 239 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Dynamical Approach to Random Matrix Theory by : László Erdős

Download or read book A Dynamical Approach to Random Matrix Theory written by László Erdős and published by American Mathematical Soc.. This book was released on 2017-08-30 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Handbook of Dynamical Systems

Download Handbook of Dynamical Systems PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0080532845
Total Pages : 1099 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Dynamical Systems by : B. Fiedler

Download or read book Handbook of Dynamical Systems written by B. Fiedler and published by Gulf Professional Publishing. This book was released on 2002-02-21 with total page 1099 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.

Dynamical Systems and Ergodic Theory

Download Dynamical Systems and Ergodic Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521575997
Total Pages : 198 pages
Book Rating : 4.5/5 (759 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems and Ergodic Theory by : Mark Pollicott

Download or read book Dynamical Systems and Ergodic Theory written by Mark Pollicott and published by Cambridge University Press. This book was released on 1998-01-29 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an essentially self contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a masters level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der waerden's theorem and szemerdi's theorem).

Encyclopaedia of Mathematics

Download Encyclopaedia of Mathematics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401512884
Total Pages : 595 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel

Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.

Ergodic Theory

Download Ergodic Theory PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1071623885
Total Pages : 707 pages
Book Rating : 4.0/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Ergodic Theory by : Cesar E. Silva

Download or read book Ergodic Theory written by Cesar E. Silva and published by Springer Nature. This book was released on 2023-07-31 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras

Handbook of Dynamical Systems

Download Handbook of Dynamical Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080478220
Total Pages : 1235 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Dynamical Systems by : A. Katok

Download or read book Handbook of Dynamical Systems written by A. Katok and published by Elsevier. This book was released on 2005-12-17 with total page 1235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey "Principal Structures of Volume 1A.The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations).. Written by experts in the field.. The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.

New Trends in Stochastic Analysis and Related Topics

Download New Trends in Stochastic Analysis and Related Topics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814360910
Total Pages : 458 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis New Trends in Stochastic Analysis and Related Topics by : Huaizhong Zhao

Download or read book New Trends in Stochastic Analysis and Related Topics written by Huaizhong Zhao and published by World Scientific. This book was released on 2012 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.

Dynamical Systems

Download Dynamical Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540494154
Total Pages : 336 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems by : Ludwig Arnold

Download or read book Dynamical Systems written by Ludwig Arnold and published by Springer. This book was released on 2006-11-14 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the lecture notes written by the four principal speakers at the C.I.M.E. session on Dynamical Systems held at Montecatini, Italy in June 1994. The goal of the session was to illustrate how methods of dynamical systems can be applied to the study of ordinary and partial differential equations. Topics in random differential equations, singular perturbations, the Conley index theory, and non-linear PDEs were discussed. Readers interested in asymptotic behavior of solutions of ODEs and PDEs and familiar with basic notions of dynamical systems will wish to consult this text.

Introduction to the Modern Theory of Dynamical Systems

Download Introduction to the Modern Theory of Dynamical Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521575577
Total Pages : 828 pages
Book Rating : 4.5/5 (755 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Modern Theory of Dynamical Systems by : Anatole Katok

Download or read book Introduction to the Modern Theory of Dynamical Systems written by Anatole Katok and published by Cambridge University Press. This book was released on 1995 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.

Stochastic Dynamics

Download Stochastic Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387226559
Total Pages : 457 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Dynamics by : Hans Crauel

Download or read book Stochastic Dynamics written by Hans Crauel and published by Springer Science & Business Media. This book was released on 2007-12-14 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the mathematical description of stochastic dynamics in discrete as well as in continuous time, this book investigates such dynamical phenomena as perturbations, bifurcations and chaos. It also introduces new ideas for the exploration of infinite dimensional systems, in particular stochastic partial differential equations. Example applications are presented from biology, chemistry and engineering, while describing numerical treatments of stochastic systems.