Series Associated With the Zeta and Related Functions

Download Series Associated With the Zeta and Related Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792370543
Total Pages : 408 pages
Book Rating : 4.3/5 (75 download)

DOWNLOAD NOW!


Book Synopsis Series Associated With the Zeta and Related Functions by : Hari M. Srivastava

Download or read book Series Associated With the Zeta and Related Functions written by Hari M. Srivastava and published by Springer Science & Business Media. This book was released on 2001 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been an increasing interest in problems involving closed form evaluations of (and representations of the Riemann Zeta function at positive integer arguments as) various families of series associated with the Riemann Zeta function ((s), the Hurwitz Zeta function ((s,a), and their such extensions and generalizations as (for example) Lerch's transcendent (or the Hurwitz-Lerch Zeta function) iI>(z, s, a). Some of these developments have apparently stemmed from an over two-century-old theorem of Christian Goldbach (1690-1764), which was stated in a letter dated 1729 from Goldbach to Daniel Bernoulli (1700-1782), from recent rediscoveries of a fairly rapidly convergent series representation for ((3), which is actually contained in a 1772 paper by Leonhard Euler (1707-1783), and from another known series representation for ((3), which was used by Roger Apery (1916-1994) in 1978 in his celebrated proof of the irrationality of ((3). This book is motivated essentially by the fact that the theories and applications of the various methods and techniques used in dealing with many different families of series associated with the Riemann Zeta function and its aforementioned relatives are to be found so far only"in widely scattered journal articles. Thus our systematic (and unified) presentation of these results on the evaluation and representation of the Zeta and related functions is expected to fill a conspicuous gap in the existing books dealing exclusively with these Zeta functions.

Zeta and Q-Zeta Functions and Associated Series and Integrals

Download Zeta and Q-Zeta Functions and Associated Series and Integrals PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0123852188
Total Pages : 675 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Zeta and Q-Zeta Functions and Associated Series and Integrals by : H. M. Srivastava

Download or read book Zeta and Q-Zeta Functions and Associated Series and Integrals written by H. M. Srivastava and published by Elsevier. This book was released on 2011-10-25 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions

The Lerch zeta-function

Download The Lerch zeta-function PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401764018
Total Pages : 192 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis The Lerch zeta-function by : Antanas Laurincikas

Download or read book The Lerch zeta-function written by Antanas Laurincikas and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-functions. Although analytic results have been presented previously in various monographs on zeta-functions, this is the first book containing both analytic and probability theory of Lerch zeta-functions. The book starts with classical analytical theory (Euler gamma-functions, functional equation, mean square). The majority of the presented results are new: on approximate functional equations and its applications and on zero distribution (zero-free regions, number of nontrivial zeros etc). Special attention is given to limit theorems in the sense of the weak convergence of probability measures for the Lerch zeta-function. From limit theorems in the space of analytic functions the universitality and functional independence is derived. In this respect the book continues the research of the first author presented in the monograph Limit Theorems for the Riemann zeta-function. This book will be useful to researchers and graduate students working in analytic and probabilistic number theory, and can also be used as a textbook for postgraduate students.

The Riemann Zeta-Function

Download The Riemann Zeta-Function PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110886146
Total Pages : 409 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis The Riemann Zeta-Function by : Anatoly A. Karatsuba

Download or read book The Riemann Zeta-Function written by Anatoly A. Karatsuba and published by Walter de Gruyter. This book was released on 2011-05-03 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Zeta Functions of Graphs

Download Zeta Functions of Graphs PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139491784
Total Pages : 253 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Zeta Functions of Graphs by : Audrey Terras

Download or read book Zeta Functions of Graphs written by Audrey Terras and published by Cambridge University Press. This book was released on 2010-11-18 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph theory meets number theory in this stimulating book. Ihara zeta functions of finite graphs are reciprocals of polynomials, sometimes in several variables. Analogies abound with number-theoretic functions such as Riemann/Dedekind zeta functions. For example, there is a Riemann hypothesis (which may be false) and prime number theorem for graphs. Explicit constructions of graph coverings use Galois theory to generalize Cayley and Schreier graphs. Then non-isomorphic simple graphs with the same zeta are produced, showing you cannot hear the shape of a graph. The spectra of matrices such as the adjacency and edge adjacency matrices of a graph are essential to the plot of this book, which makes connections with quantum chaos and random matrix theory, plus expander/Ramanujan graphs of interest in computer science. Created for beginning graduate students, the book will also appeal to researchers. Many well-chosen illustrations and exercises, both theoretical and computer-based, are included throughout.

Dynamics of Linear Operators

Download Dynamics of Linear Operators PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521514967
Total Pages : 352 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Dynamics of Linear Operators by : Frédéric Bayart

Download or read book Dynamics of Linear Operators written by Frédéric Bayart and published by Cambridge University Press. This book was released on 2009-06-04 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to assemble the wide body of theory which has rapidly developed on the dynamics of linear operators. Written for researchers in operator theory, but also accessible to anyone with a reasonable background in functional analysis at the graduate level.

Zeta and L-Functions of Varieties and Motives

Download Zeta and L-Functions of Varieties and Motives PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108574912
Total Pages : 217 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Zeta and L-Functions of Varieties and Motives by : Bruno Kahn

Download or read book Zeta and L-Functions of Varieties and Motives written by Bruno Kahn and published by Cambridge University Press. This book was released on 2020-05-07 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on commutative algebra, group cohomology, homological algebra, and the theory of motives. Zeta and L-functions sit at the meeting point of all these theories and have played a profound role in shaping the evolution of number theory. This book presents a big picture of zeta and L-functions and the complex theories surrounding them, combining standard material with results and perspectives that are not made explicit elsewhere in the literature. Particular attention is paid to the development of the ideas surrounding zeta and L-functions, using quotes from original sources and comments throughout the book, pointing the reader towards the relevant history. Based on an advanced course given at Jussieu in 2013, it is an ideal introduction for graduate students and researchers to this fascinating story.

Zeta and q-Zeta Functions and Associated Series and Integrals

Download Zeta and q-Zeta Functions and Associated Series and Integrals PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0123852196
Total Pages : 675 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Zeta and q-Zeta Functions and Associated Series and Integrals by : Hari M Srivastava

Download or read book Zeta and q-Zeta Functions and Associated Series and Integrals written by Hari M Srivastava and published by Elsevier. This book was released on 2011-10-11 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. - Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions

Bernoulli Numbers and Zeta Functions

Download Bernoulli Numbers and Zeta Functions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 4431549196
Total Pages : 278 pages
Book Rating : 4.4/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Bernoulli Numbers and Zeta Functions by : Tsuneo Arakawa

Download or read book Bernoulli Numbers and Zeta Functions written by Tsuneo Arakawa and published by Springer. This book was released on 2014-07-11 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the doub le zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new.

Lectures on the Riemann Zeta Function

Download Lectures on the Riemann Zeta Function PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470418517
Total Pages : 130 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Lectures on the Riemann Zeta Function by : H. Iwaniec

Download or read book Lectures on the Riemann Zeta Function written by H. Iwaniec and published by American Mathematical Society. This book was released on 2014-10-07 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Riemann zeta function was introduced by L. Euler (1737) in connection with questions about the distribution of prime numbers. Later, B. Riemann (1859) derived deeper results about the prime numbers by considering the zeta function in the complex variable. The famous Riemann Hypothesis, asserting that all of the non-trivial zeros of zeta are on a critical line in the complex plane, is one of the most important unsolved problems in modern mathematics. The present book consists of two parts. The first part covers classical material about the zeros of the Riemann zeta function with applications to the distribution of prime numbers, including those made by Riemann himself, F. Carlson, and Hardy-Littlewood. The second part gives a complete presentation of Levinson's method for zeros on the critical line, which allows one to prove, in particular, that more than one-third of non-trivial zeros of zeta are on the critical line. This approach and some results concerning integrals of Dirichlet polynomials are new. There are also technical lemmas which can be useful in a broader context.

Irresistible Integrals

Download Irresistible Integrals PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521796361
Total Pages : 326 pages
Book Rating : 4.7/5 (963 download)

DOWNLOAD NOW!


Book Synopsis Irresistible Integrals by : George Boros

Download or read book Irresistible Integrals written by George Boros and published by Cambridge University Press. This book was released on 2004-06-21 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2004, uses the problem of exact evaluation of definite integrals as a starting point for exploring many areas of mathematics.

Automorphic Forms, Representation Theory and Arithmetic

Download Automorphic Forms, Representation Theory and Arithmetic PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783540106975
Total Pages : 355 pages
Book Rating : 4.1/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Automorphic Forms, Representation Theory and Arithmetic by : S. Gelbart

Download or read book Automorphic Forms, Representation Theory and Arithmetic written by S. Gelbart and published by Springer. This book was released on 1982-03-01 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: International Colloquium an Automorphic Forms, Representation Theory and Arithmetic. Published for the Tata Institute of Fundamental Research, Bombay

Higher Regulators, Algebraic $K$-Theory, and Zeta Functions of Elliptic Curves

Download Higher Regulators, Algebraic $K$-Theory, and Zeta Functions of Elliptic Curves PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821829734
Total Pages : 114 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Higher Regulators, Algebraic $K$-Theory, and Zeta Functions of Elliptic Curves by : Spencer J. Bloch

Download or read book Higher Regulators, Algebraic $K$-Theory, and Zeta Functions of Elliptic Curves written by Spencer J. Bloch and published by American Mathematical Soc.. This book was released on 2011 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more).

p-adic Numbers, p-adic Analysis, and Zeta-Functions

Download p-adic Numbers, p-adic Analysis, and Zeta-Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461211123
Total Pages : 163 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis p-adic Numbers, p-adic Analysis, and Zeta-Functions by : Neal Koblitz

Download or read book p-adic Numbers, p-adic Analysis, and Zeta-Functions written by Neal Koblitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.

Riemann's Zeta Function

Download Riemann's Zeta Function PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 9780486417400
Total Pages : 338 pages
Book Rating : 4.4/5 (174 download)

DOWNLOAD NOW!


Book Synopsis Riemann's Zeta Function by : Harold M. Edwards

Download or read book Riemann's Zeta Function written by Harold M. Edwards and published by Courier Corporation. This book was released on 2001-01-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics. English translation of Riemann's original document appears in the Appendix.

The Bloch–Kato Conjecture for the Riemann Zeta Function

Download The Bloch–Kato Conjecture for the Riemann Zeta Function PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316241300
Total Pages : 317 pages
Book Rating : 4.3/5 (162 download)

DOWNLOAD NOW!


Book Synopsis The Bloch–Kato Conjecture for the Riemann Zeta Function by : John Coates

Download or read book The Bloch–Kato Conjecture for the Riemann Zeta Function written by John Coates and published by Cambridge University Press. This book was released on 2015-03-19 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are still many arithmetic mysteries surrounding the values of the Riemann zeta function at the odd positive integers greater than one. For example, the matter of their irrationality, let alone transcendence, remains largely unknown. However, by extending ideas of Garland, Borel proved that these values are related to the higher K-theory of the ring of integers. Shortly afterwards, Bloch and Kato proposed a Tamagawa number-type conjecture for these values, and showed that it would follow from a result in motivic cohomology which was unknown at the time. This vital result from motivic cohomology was subsequently proven by Huber, Kings, and Wildeshaus. Bringing together key results from K-theory, motivic cohomology, and Iwasawa theory, this book is the first to give a complete proof, accessible to graduate students, of the Bloch–Kato conjecture for odd positive integers. It includes a new account of the results from motivic cohomology by Huber and Kings.

Exploring the Riemann Zeta Function

Download Exploring the Riemann Zeta Function PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319599690
Total Pages : 300 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Exploring the Riemann Zeta Function by : Hugh Montgomery

Download or read book Exploring the Riemann Zeta Function written by Hugh Montgomery and published by Springer. This book was released on 2017-09-11 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects. The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.