Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Segmentation With Matlab Supervised Learning Techniques
Download Segmentation With Matlab Supervised Learning Techniques full books in PDF, epub, and Kindle. Read online Segmentation With Matlab Supervised Learning Techniques ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book MATLAB Deep Learning written by Phil Kim and published by Apress. This book was released on 2017-06-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.
Book Synopsis Machine Learning for Signal Processing by : Max A. Little
Download or read book Machine Learning for Signal Processing written by Max A. Little and published by Oxford University Press, USA. This book was released on 2019 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.
Book Synopsis Computer Vision Applications by : Chetan Arora
Download or read book Computer Vision Applications written by Chetan Arora and published by Springer Nature. This book was released on 2019-11-14 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the third Workshop on Computer Vision Applications, WCVA 2018, held in Conjunction with ICVGIP 2018, in Hyderabad, India, in December 2018. The 10 revised full papers presented were carefully reviewed and selected from 32 submissions. The papers focus on computer vision; industrial applications; medical applications; and social applications.
Book Synopsis Clinical Nuclear Medicine Physics with MATLAB® by : Maria Lyra Georgosopoulou
Download or read book Clinical Nuclear Medicine Physics with MATLAB® written by Maria Lyra Georgosopoulou and published by CRC Press. This book was released on 2021-09-28 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of MATLAB® in clinical Medical Physics is continuously increasing, thanks to new technologies and developments in the field. However, there is a lack of practical guidance for students, researchers, and medical professionals on how to incorporate it into their work. Focusing on the areas of diagnostic Nuclear Medicine and Radiation Oncology Imaging, this book provides a comprehensive treatment of the use of MATLAB in clinical Medical Physics, in Nuclear Medicine. It is an invaluable guide for medical physicists and researchers, in addition to postgraduates in medical physics or biomedical engineering, preparing for a career in the field. In the field of Nuclear Medicine, MATLAB enables quantitative analysis and the visualization of nuclear medical images of several modalities, such as Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), or a hybrid system where a Computed Tomography system is incorporated into a SPECT or PET system or similarly, a Magnetic Resonance Imaging system (MRI) into a SPECT or PET system. Through a high-performance interactive software, MATLAB also allows matrix computation, simulation, quantitative analysis, image processing, and algorithm implementation. MATLAB can provide medical physicists with the necessary tools for analyzing and visualizing medical images. It is useful in creating imaging algorithms for diagnostic and therapeutic purposes, solving problems of image reconstruction, processing, and calculating absorbed doses with accuracy. An important feature of this application of MATLAB is that the results are completely reliable and are not dependent on any specific γ-cameras and workstations. The use of MATLAB algorithms can greatly assist in the exploration of the anatomy and functions of the human body, offering accurate and precise results in Nuclear Medicine studies. KEY FEATURES Presents a practical, case-based approach whilst remaining accessible to students Contains chapter contributions from subject area specialists across the field Includes real clinical problems and examples, with worked through solutions Maria Lyra Georgosopoulou, PhD, is a Medical Physicist and Associate Professor at the National and Kapodistrian University of Athens, Greece. Photo credit: The Antikythera Mechanism is the world’s oldest known analog computer. It consisted of many wheels and discs that could be placed onto the mechanism for calculations. It is possible that the first algorithms and analog calculations in mathematics were implemented with this mechanism, invented in the early first centuries BC. It has been selected for the cover to demonstrate the importance of calculations in science.
Book Synopsis Machine Learning and Deep Learning Techniques for Medical Image Recognition by : Ben Othman Soufiene
Download or read book Machine Learning and Deep Learning Techniques for Medical Image Recognition written by Ben Othman Soufiene and published by CRC Press. This book was released on 2023-12-01 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Deep Learning Techniques for Medical Image Recognition comprehensively reviews deep learning-based algorithms in medical image analysis problems including medical image processing. It includes a detailed review of deep learning approaches for semantic object detection and segmentation in medical image computing and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks with the theory and varied selection of techniques for semantic segmentation using deep learning principles in medical imaging supported by practical examples. Features: Offers important key aspects in the development and implementation of machine learning and deep learning approaches toward developing prediction tools and models and improving medical diagnosis Teaches how machine learning and deep learning algorithms are applied to a broad range of application areas, including chest X-ray, breast computer-aided detection, lung and chest, microscopy, and pathology Covers common research problems in medical image analysis and their challenges Focuses on aspects of deep learning and machine learning for combating COVID-19 Includes pertinent case studies This book is aimed at researchers and graduate students in computer engineering, artificial intelligence and machine learning, and biomedical imaging.
Book Synopsis MATLAB Machine Learning by : Michael Paluszek
Download or read book MATLAB Machine Learning written by Michael Paluszek and published by Apress. This book was released on 2016-12-28 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive guide to machine learning with worked examples in MATLAB. It starts with an overview of the history of Artificial Intelligence and automatic control and how the field of machine learning grew from these. It provides descriptions of all major areas in machine learning. The book reviews commercially available packages for machine learning and shows how they fit into the field. The book then shows how MATLAB can be used to solve machine learning problems and how MATLAB graphics can enhance the programmer’s understanding of the results and help users of their software grasp the results. Machine Learning can be very mathematical. The mathematics for each area is introduced in a clear and concise form so that even casual readers can understand the math. Readers from all areas of engineering will see connections to what they know and will learn new technology. The book then provides complete solutions in MATLAB for several important problems in machine learning including face identification, autonomous driving, and data classification. Full source code is provided for all of the examples and applications in the book. What you'll learn: An overview of the field of machine learning Commercial and open source packages in MATLAB How to use MATLAB for programming and building machine learning applications MATLAB graphics for machine learning Practical real world examples in MATLAB for major applications of machine learning in big data Who is this book for: The primary audiences are engineers and engineering students wanting a comprehensive and practical introduction to machine learning.
Book Synopsis Machine Learning and Deep Learning Techniques for Medical Science by : K. Gayathri Devi
Download or read book Machine Learning and Deep Learning Techniques for Medical Science written by K. Gayathri Devi and published by CRC Press. This book was released on 2022-05-11 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of machine learning is growing exponentially into every branch of business and science, including medical science. This book presents the integration of machine learning (ML) and deep learning (DL) algorithms that can be applied in the healthcare sector to reduce the time required by doctors, radiologists, and other medical professionals for analyzing, predicting, and diagnosing the conditions with accurate results. The book offers important key aspects in the development and implementation of ML and DL approaches toward developing prediction tools and models and improving medical diagnosis. The contributors explore the recent trends, innovations, challenges, and solutions, as well as case studies of the applications of ML and DL in intelligent system-based disease diagnosis. The chapters also highlight the basics and the need for applying mathematical aspects with reference to the development of new medical models. Authors also explore ML and DL in relation to artificial intelligence (AI) prediction tools, the discovery of drugs, neuroscience, diagnosis in multiple imaging modalities, and pattern recognition approaches to functional magnetic resonance imaging images. This book is for students and researchers of computer science and engineering, electronics and communication engineering, and information technology; for biomedical engineering researchers, academicians, and educators; and for students and professionals in other areas of the healthcare sector. Presents key aspects in the development and the implementation of ML and DL approaches toward developing prediction tools, models, and improving medical diagnosis Discusses the recent trends, innovations, challenges, solutions, and applications of intelligent system-based disease diagnosis Examines DL theories, models, and tools to enhance health information systems Explores ML and DL in relation to AI prediction tools, discovery of drugs, neuroscience, and diagnosis in multiple imaging modalities Dr. K. Gayathri Devi is a Professor at the Department of Electronics and Communication Engineering, Dr. N.G.P Institute of Technology, Tamil Nadu, India. Dr. Kishore Balasubramanian is an Assistant Professor (Senior Scale) at the Department of EEE at Dr. Mahalingam College of Engineering & Technology, Tamil Nadu, India. Dr. Le Anh Ngoc is a Director of Swinburne Innovation Space and Professor in Swinburne University of Technology (Vietnam).
Download or read book ICCCE 2021 written by Amit Kumar and published by Springer Nature. This book was released on 2022-05-15 with total page 1229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of research articles presented at the 4th International Conference on Communications and Cyber-Physical Engineering (ICCCE 2021), held on April 9 and 10, 2021, at CMR Engineering College, Hyderabad, India. ICCCE is one of the most prestigious conferences conceptualized in the field of networking and communication technology offering in-depth information on the latest developments in voice, data, image, and multimedia. Discussing the latest developments in voice and data communication engineering, cyber-physical systems, network science, communication software, image, and multimedia processing research and applications, as well as communication technologies and other related technologies, it includes contributions from both academia and industry. This book is a valuable resource for scientists, research scholars, and PG students working to formulate their research ideas and find the future directions in these areas. Further, it may serve as a reference work to understand the latest engineering and technologies used by practicing engineers in the field of communication engineering.
Book Synopsis Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques by : Gonzalez, Fabio A.
Download or read book Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques written by Gonzalez, Fabio A. and published by IGI Global. This book was released on 2009-12-31 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical images are at the base of many routine clinical decisions and their influence continues to increase in many fields of medicine. Since the last decade, computers have become an invaluable tool for supporting medical image acquisition, processing, organization and analysis. Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques provides a panorama of the current boundary between biomedical complexity coming from the medical image context and the multiple techniques which have been used for solving many of these problems. This innovative publication serves as a leading industry reference as well as a source of creative ideas for applications of medical issues.
Book Synopsis Focus on Bio-Image Informatics by : Winnok H. De Vos
Download or read book Focus on Bio-Image Informatics written by Winnok H. De Vos and published by Springer. This book was released on 2016-05-20 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of Advances Anatomy Embryology and Cell Biology focuses on the emerging field of bio-image informatics, presenting novel and exciting ways of handling and interpreting large image data sets. A collection of focused reviews written by key players in the field highlights the major directions and provides an excellent reference work for both young and experienced researchers.
Book Synopsis Hyperspectral Image Analysis by : Saurabh Prasad
Download or read book Hyperspectral Image Analysis written by Saurabh Prasad and published by Springer Nature. This book was released on 2020-04-27 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Book Synopsis Modeling, Machine Learning and Astronomy by : Snehanshu Saha
Download or read book Modeling, Machine Learning and Astronomy written by Snehanshu Saha and published by Springer Nature. This book was released on 2021-01-12 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the First International Conference on Modeling, Machine Learning and Astronomy, MMLA 2019, held in Bangalore, India, in November 2019. The 11 full papers and 3 short papers presented in this volume were carefully reviewed and selected from 63 submissions. They are organized in topical sections on modeling and foundations; machine learning applications; astronomy and astroinformatics.
Book Synopsis Deep Learning Applications, Volume 2 by : M. Arif Wani
Download or read book Deep Learning Applications, Volume 2 written by M. Arif Wani and published by Springer. This book was released on 2020-12-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.
Book Synopsis Information Management and Machine Intelligence by : Dinesh Goyal
Download or read book Information Management and Machine Intelligence written by Dinesh Goyal and published by Springer Nature. This book was released on 2020-09-16 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features selected papers presented at the International Conference on Information Management and Machine Intelligence (ICIMMI 2019), held at the Poornima Institute of Engineering & Technology, Jaipur, Rajasthan, India, on December 14–15, 2019. It covers a range of topics, including data analytics; AI; machine and deep learning; information management, security, processing techniques and interpretation; applications of artificial intelligence in soft computing and pattern recognition; cloud-based applications for machine learning; application of IoT in power distribution systems; as well as wireless sensor networks and adaptive wireless communication.
Book Synopsis Deep Learning Techniques for Biomedical and Health Informatics by : Basant Agarwal
Download or read book Deep Learning Techniques for Biomedical and Health Informatics written by Basant Agarwal and published by Academic Press. This book was released on 2020-01-14 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing. - Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring - Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making - Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis
Book Synopsis Early Prediction of Diseases using Deep Learning and Machine Learning Techniques by : Dr. Sasidhar B
Download or read book Early Prediction of Diseases using Deep Learning and Machine Learning Techniques written by Dr. Sasidhar B and published by Archers & Elevators Publishing House. This book was released on with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning by : Rani, Geeta
Download or read book Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning written by Rani, Geeta and published by IGI Global. This book was released on 2020-10-16 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.