Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Relations Of Two Double Weighted Sums Of Multiple Zeta Values
Download Relations Of Two Double Weighted Sums Of Multiple Zeta Values full books in PDF, epub, and Kindle. Read online Relations Of Two Double Weighted Sums Of Multiple Zeta Values ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Theory of Multiple Zeta Values with Applications in Combinatorics by : Minking Eie
Download or read book The Theory of Multiple Zeta Values with Applications in Combinatorics written by Minking Eie and published by World Scientific. This book was released on 2013 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on the theory of multiple zeta values since its birth around 1994. Readers will find that the shuffle products of multiple zeta values are applied to complicated counting problems in combinatorics, producing numerous interesting identities that are ready to be used. This will provide a powerful tool to deal with problems in multiple zeta values, both in evaluations and shuffle relations. The volume will benefit graduate students doing research in number theory.
Book Synopsis Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values by : Jianqiang Zhao
Download or read book Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values written by Jianqiang Zhao and published by World Scientific. This book was released on 2016-03-07 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first introductory book on multiple zeta functions and multiple polylogarithms which are the generalizations of the Riemann zeta function and the classical polylogarithms, respectively, to the multiple variable setting. It contains all the basic concepts and the important properties of these functions and their special values. This book is aimed at graduate students, mathematicians and physicists who are interested in this current active area of research.The book will provide a detailed and comprehensive introduction to these objects, their fascinating properties and interesting relations to other mathematical subjects, and various generalizations such as their q-analogs and their finite versions (by taking partial sums modulo suitable prime powers). Historical notes and exercises are provided at the end of each chapter.
Book Synopsis The Geometry of Algebraic Cycles by : Reza Akhtar
Download or read book The Geometry of Algebraic Cycles written by Reza Akhtar and published by American Mathematical Soc.. This book was released on 2010 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of algebraic cycles has its roots in the study of divisors, extending as far back as the nineteenth century. Since then, and in particular in recent years, algebraic cycles have made a significant impact on many fields of mathematics, among them number theory, algebraic geometry, and mathematical physics. The present volume contains articles on all of the above aspects of algebraic cycles. It also contains a mixture of both research papers and expository articles, so that it would be of interest to both experts and beginners in the field.
Book Synopsis Introduction to Vassiliev Knot Invariants by : S. Chmutov
Download or read book Introduction to Vassiliev Knot Invariants written by S. Chmutov and published by Cambridge University Press. This book was released on 2012-05-24 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed exposition of the theory with an emphasis on its combinatorial aspects.
Book Synopsis Generalized Hypergeometric Series by : W. N. Bailey
Download or read book Generalized Hypergeometric Series written by W. N. Bailey and published by . This book was released on 1972 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Bernoulli Numbers and Zeta Functions by : Tsuneo Arakawa
Download or read book Bernoulli Numbers and Zeta Functions written by Tsuneo Arakawa and published by Springer. This book was released on 2014-07-11 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the doub le zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new.
Book Synopsis Analytic Number Theory by : Yoichi Motohashi
Download or read book Analytic Number Theory written by Yoichi Motohashi and published by Cambridge University Press. This book was released on 1997-10-16 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authoritative, up-to-date review of analytic number theory containing outstanding contributions from leading international figures.
Book Synopsis Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa by : Masanobu Kaneko
Download or read book Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa written by Masanobu Kaneko and published by World Scientific. This book was released on 2006-01-03 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works.This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions.
Book Synopsis Automorphic Forms and Zeta Functions by : Siegfried Bcherer
Download or read book Automorphic Forms and Zeta Functions written by Siegfried Bcherer and published by World Scientific. This book was released on 2006 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works. This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions. Contents: Tsuneo Arakawa and His Works; Estimate of the Dimensions of Hilbert Modular Forms by Means of Differential Operator (H Aoki); Marsden-Weinstein Reduction, Orbits and Representations of the Jacobi Group (R Berndt); On Eisenstein Series of Degree Two for Squarefree Levels and the Genus Version of the Basis Problem I (S Bocherer); Double Zeta Values and Modular Forms (H Gangl et al.); Type Numbers and Linear Relations of Theta Series for Some General Orders of Quaternion Algebras (K Hashimoto); Skewholomorphic Jacobi Forms of Higher Degree (S Hayashida); A Hermitian Analog of the Schottky Form (M Hentschel & A Krieg); The Siegel Series and Spherical Functions on O(2n)/(O(n) x O(n)) (Y Hironaka & F Sati); Koecher-Maa Series for Real Analytic Siegel Eisenstein Series (T Ibukiyama & H Katsurada); A Short History on Investigation of the Special Values of Zeta and L-Functions of Totally Real Number Fields (T Ishii & T Oda); Genus Theta Series, Hecke Operators and the Basis Problem for Eisenstein Series (H Katsurada & R Schulze-Pillot); The Quadratic Mean of Automorphic L-Functions (W Kohnen et al.); Inner Product Formula for Kudla Lift (A Murase & T Sugano); On Certain Automorphic Forms of Sp(1,q) (Arakawa's Results and Recent Progress) (H Narita); On Modular Forms for the Paramodular Group (B Roberts & R Schmidt); SL(2,Z)-Invariant Spaces Spanned by Modular Units (N-P Skoruppa & W Eholzer). Readership: Researchers and graduate students in number theory or representation theory as well as in mathematical physics or combinatorics.
Book Synopsis Mathematical Analysis and Applications by : Michael Ruzhansky
Download or read book Mathematical Analysis and Applications written by Michael Ruzhansky and published by John Wiley & Sons. This book was released on 2018-04-05 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative text that presents the current problems, theories, and applications of mathematical analysis research Mathematical Analysis and Applications: Selected Topics offers the theories, methods, and applications of a variety of targeted topics including: operator theory, approximation theory, fixed point theory, stability theory, minimization problems, many-body wave scattering problems, Basel problem, Corona problem, inequalities, generalized normed spaces, variations of functions and sequences, analytic generalizations of the Catalan, Fuss, and Fuss–Catalan Numbers, asymptotically developable functions, convex functions, Gaussian processes, image analysis, and spectral analysis and spectral synthesis. The authors—a noted team of international researchers in the field— highlight the basic developments for each topic presented and explore the most recent advances made in their area of study. The text is presented in such a way that enables the reader to follow subsequent studies in a burgeoning field of research. This important text: Presents a wide-range of important topics having current research importance and interdisciplinary applications such as game theory, image processing, creation of materials with a desired refraction coefficient, etc. Contains chapters written by a group of esteemed researchers in mathematical analysis Includes problems and research questions in order to enhance understanding of the information provided Offers references that help readers advance to further study Written for researchers, graduate students, educators, and practitioners with an interest in mathematical analysis, Mathematical Analysis and Applications: Selected Topics includes the most recent research from a range of mathematical fields.
Book Synopsis Zeta and Q-Zeta Functions and Associated Series and Integrals by : H. M. Srivastava
Download or read book Zeta and Q-Zeta Functions and Associated Series and Integrals written by H. M. Srivastava and published by Elsevier. This book was released on 2011-10-25 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions
Book Synopsis The 1-2-3 of Modular Forms by : Jan Hendrik Bruinier
Download or read book The 1-2-3 of Modular Forms written by Jan Hendrik Bruinier and published by Springer Science & Business Media. This book was released on 2008-02-10 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
Book Synopsis (Almost) Impossible Integrals, Sums, and Series by : Cornel Ioan Vălean
Download or read book (Almost) Impossible Integrals, Sums, and Series written by Cornel Ioan Vălean and published by Springer. This book was released on 2019-05-10 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a multitude of challenging problems and solutions that are not commonly found in classical textbooks. One goal of the book is to present these fascinating mathematical problems in a new and engaging way and illustrate the connections between integrals, sums, and series, many of which involve zeta functions, harmonic series, polylogarithms, and various other special functions and constants. Throughout the book, the reader will find both classical and new problems, with numerous original problems and solutions coming from the personal research of the author. Where classical problems are concerned, such as those given in Olympiads or proposed by famous mathematicians like Ramanujan, the author has come up with new, surprising or unconventional ways of obtaining the desired results. The book begins with a lively foreword by renowned author Paul Nahin and is accessible to those with a good knowledge of calculus from undergraduate students to researchers, and will appeal to all mathematical puzzlers who love a good integral or series.
Book Synopsis Periods in Quantum Field Theory and Arithmetic by : José Ignacio Burgos Gil
Download or read book Periods in Quantum Field Theory and Arithmetic written by José Ignacio Burgos Gil and published by Springer Nature. This book was released on 2020-03-14 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the outcome of research initiatives formed during the special ``Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matemáticas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
Book Synopsis Software for Algebraic Geometry by : Michael E. Stillman
Download or read book Software for Algebraic Geometry written by Michael E. Stillman and published by Springer Science & Business Media. This book was released on 2008-05-29 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms in algebraic geometry go hand in hand with software packages that implement them. Together they have established the modern field of computational algebraic geometry which has come to play a major role in both theoretical advances and applications. Over the past fifteen years, several excellent general purpose packages for computations in algebraic geometry have been developed, such as, CoCoA, Singular and Macaulay 2. While these packages evolve continuously, incorporating new mathematical advances, they both motivate and demand the creation of new mathematics and smarter algorithms. This volume reflects the workshop “Software for Algebraic Geometry” held in the week from 23 to 27 October 2006, as the second workshop in the thematic year on Applications of Algebraic Geometry at the IMA. The papers in this volume describe the software packages Bertini, PHClab, Gfan, DEMiCs, SYNAPS, TrIm, Gambit, ApaTools, and the application of Risa/Asir to a conjecture on multiple zeta values. They offer the reader a broad view of current trends in computational algebraic geometry through software development and applications.
Book Synopsis Combinatorics: The Art of Counting by : Bruce E. Sagan
Download or read book Combinatorics: The Art of Counting written by Bruce E. Sagan and published by American Mathematical Soc.. This book was released on 2020-10-16 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Book Synopsis CRC Standard Mathematical Tables and Formulae, 32nd Edition by : Daniel Zwillinger
Download or read book CRC Standard Mathematical Tables and Formulae, 32nd Edition written by Daniel Zwillinger and published by CRC Press. This book was released on 2011-06-22 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: With over 6,000 entries, CRC Standard Mathematical Tables and Formulae, 32nd Edition continues to provide essential formulas, tables, figures, and descriptions, including many diagrams, group tables, and integrals not available online. This new edition incorporates important topics that are unfamiliar to some readers, such as visual proofs and sequences, and illustrates how mathematical information is interpreted. Material is presented in a multisectional format, with each section containing a valuable collection of fundamental tabular and expository reference material. New to the 32nd Edition A new chapter on Mathematical Formulae from the Sciences that contains the most important formulae from a variety of fields, including acoustics, astrophysics, epidemiology, finance, statistical mechanics, and thermodynamics New material on contingency tables, estimators, process capability, runs test, and sample sizes New material on cellular automata, knot theory, music, quaternions, and rational trigonometry Updated and more streamlined tables Retaining the successful format of previous editions, this comprehensive handbook remains an invaluable reference for professionals and students in mathematical and scientific fields.