Distributionally Robust Learning

Download Distributionally Robust Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680837728
Total Pages : 258 pages
Book Rating : 4.8/5 (377 download)

DOWNLOAD NOW!


Book Synopsis Distributionally Robust Learning by : Ruidi Chen

Download or read book Distributionally Robust Learning written by Ruidi Chen and published by . This book was released on 2020-12-23 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Algorithms for Regression and Classification

Download Algorithms for Regression and Classification PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 3837096041
Total Pages : 154 pages
Book Rating : 4.8/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Regression and Classification by : Robin Nunkesser

Download or read book Algorithms for Regression and Classification written by Robin Nunkesser and published by BoD – Books on Demand. This book was released on 2009 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this dissertation is on robust regression and classification in genetic association studies. In the context of robust regression, new exact algorithms, results for robust online scale estimation, and an evolutionary computation algorithm for different estimators in higher dimensions are presented. For classification in genetic association studies, this thesis describes a Genetic Programming algorithm that outpeforms the standard approaches on the considered data sets.

Robustness and Complex Data Structures

Download Robustness and Complex Data Structures PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642354947
Total Pages : 377 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Robustness and Complex Data Structures by : Claudia Becker

Download or read book Robustness and Complex Data Structures written by Claudia Becker and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This Festschrift in honour of Ursula Gather’s 60th birthday deals with modern topics in the field of robust statistical methods, especially for time series and regression analysis, and with statistical methods for complex data structures. The individual contributions of leading experts provide a textbook-style overview of the topic, supplemented by current research results and questions. The statistical theory and methods in this volume aim at the analysis of data which deviate from classical stringent model assumptions, which contain outlying values and/or have a complex structure. Written for researchers as well as master and PhD students with a good knowledge of statistics.

Regression and Other Stories

Download Regression and Other Stories PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110702398X
Total Pages : 551 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Regression and Other Stories by : Andrew Gelman

Download or read book Regression and Other Stories written by Andrew Gelman and published by Cambridge University Press. This book was released on 2021 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical approach to using regression and computation to solve real-world problems of estimation, prediction, and causal inference.

Learning in Non-Stationary Environments

Download Learning in Non-Stationary Environments PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441980202
Total Pages : 439 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Learning in Non-Stationary Environments by : Moamar Sayed-Mouchaweh

Download or read book Learning in Non-Stationary Environments written by Moamar Sayed-Mouchaweh and published by Springer Science & Business Media. This book was released on 2012-04-13 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy. Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations. This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research

Download Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811066779
Total Pages : 154 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research by : Chao Shang

Download or read book Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research written by Chao Shang and published by Springer. This book was released on 2018-02-22 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle. Using said framework as a point of departure, it then proposes novel strategies for dealing with control monitoring and quality prediction problems in industrial production contexts. The thesis reveals the slowly varying nature of industrial production processes under feedback control, and integrates it with process data analytics to offer powerful prior knowledge that gives rise to statistical methods tailored to industrial data. It addresses several issues of immediate interest in industrial practice, including process monitoring, control performance assessment and diagnosis, monitoring system design, and product quality prediction. In particular, it proposes a holistic and pragmatic design framework for industrial monitoring systems, which delivers effective elimination of false alarms, as well as intelligent self-running by fully utilizing the information underlying the data. One of the strengths of this thesis is its integration of insights from statistics, machine learning, control theory and engineering to provide a new scheme for industrial process modeling in the era of big data.

Pattern Recognition and Computer Vision

Download Pattern Recognition and Computer Vision PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030606392
Total Pages : 707 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Pattern Recognition and Computer Vision by : Yuxin Peng

Download or read book Pattern Recognition and Computer Vision written by Yuxin Peng and published by Springer Nature. This book was released on 2020-10-14 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNCS 12305, 12306, and 12307 constitutes the refereed proceedings of the Third Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2020, held virtually in Nanjing, China, in October 2020. The 158 full papers presented were carefully reviewed and selected from 402 submissions. The papers have been organized in the following topical sections: Part I: Computer Vision and Application, Part II: Pattern Recognition and Application, Part III: Machine Learning.

Modern Methods for Robust Regression

Download Modern Methods for Robust Regression PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 1412940729
Total Pages : 129 pages
Book Rating : 4.4/5 (129 download)

DOWNLOAD NOW!


Book Synopsis Modern Methods for Robust Regression by : Robert Andersen

Download or read book Modern Methods for Robust Regression written by Robert Andersen and published by SAGE. This book was released on 2008 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.

Applied Linear Statistical Models

Download Applied Linear Statistical Models PDF Online Free

Author :
Publisher : McGraw-Hill/Irwin
ISBN 13 : 9780072386882
Total Pages : 1396 pages
Book Rating : 4.3/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Applied Linear Statistical Models by : Michael H. Kutner

Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.

ECAI 2020

Download ECAI 2020 PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 164368101X
Total Pages : 3122 pages
Book Rating : 4.6/5 (436 download)

DOWNLOAD NOW!


Book Synopsis ECAI 2020 by : G. De Giacomo

Download or read book ECAI 2020 written by G. De Giacomo and published by IOS Press. This book was released on 2020-09-11 with total page 3122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), held in Santiago de Compostela, Spain, from 29 August to 8 September 2020. The conference was postponed from June, and much of it conducted online due to the COVID-19 restrictions. The conference is one of the principal occasions for researchers and practitioners of AI to meet and discuss the latest trends and challenges in all fields of AI and to demonstrate innovative applications and uses of advanced AI technology. The book also includes the proceedings of the 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) held at the same time. A record number of more than 1,700 submissions was received for ECAI 2020, of which 1,443 were reviewed. Of these, 361 full-papers and 36 highlight papers were accepted (an acceptance rate of 25% for full-papers and 45% for highlight papers). The book is divided into three sections: ECAI full papers; ECAI highlight papers; and PAIS papers. The topics of these papers cover all aspects of AI, including Agent-based and Multi-agent Systems; Computational Intelligence; Constraints and Satisfiability; Games and Virtual Environments; Heuristic Search; Human Aspects in AI; Information Retrieval and Filtering; Knowledge Representation and Reasoning; Machine Learning; Multidisciplinary Topics and Applications; Natural Language Processing; Planning and Scheduling; Robotics; Safe, Explainable, and Trustworthy AI; Semantic Technologies; Uncertainty in AI; and Vision. The book will be of interest to all those whose work involves the use of AI technology.

Spatial Analysis Methods and Practice

Download Spatial Analysis Methods and Practice PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108498981
Total Pages : 535 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Spatial Analysis Methods and Practice by : George Grekousis

Download or read book Spatial Analysis Methods and Practice written by George Grekousis and published by Cambridge University Press. This book was released on 2020-06-11 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory overview of spatial analysis and statistics through GIS, including worked examples and critical analysis of results.

Econometric Analysis of Cross Section and Panel Data, second edition

Download Econometric Analysis of Cross Section and Panel Data, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262232588
Total Pages : 1095 pages
Book Rating : 4.2/5 (622 download)

DOWNLOAD NOW!


Book Synopsis Econometric Analysis of Cross Section and Panel Data, second edition by : Jeffrey M. Wooldridge

Download or read book Econometric Analysis of Cross Section and Panel Data, second edition written by Jeffrey M. Wooldridge and published by MIT Press. This book was released on 2010-10-01 with total page 1095 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.

Future Business Software

Download Future Business Software PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319041444
Total Pages : 142 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Future Business Software by : Gino Brunetti

Download or read book Future Business Software written by Gino Brunetti and published by Springer. This book was released on 2014-07-08 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​What will business software look like in the future? And how will it be developed? This book covers the proceedings of the first international conference on Future Business Software – a new think tank discussing the trends in enterprise software with speakers from Europe’s most successful software companies and the leading research institutions. The articles focus on two of the most prominent trends in the field: emergent software and agile development processes. “Emergent Software” is a new paradigm of software development that addresses the highly complex requirements of tomorrow’s business software and aims at dynamically and flexibly combining a business software solution’s different components in order to fulfill customers’ needs with a minimum of effort. Agile development processes are the response of software technology to the implementation of diverse and rapidly changing software requirements. A major focus is on the minimization of project risks, e.g. through short, iterative development cycles, test-driven development and an intensive culture of communication.

Computer Vision – ECCV 2020

Download Computer Vision – ECCV 2020 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030585891
Total Pages : 832 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision – ECCV 2020 by : Andrea Vedaldi

Download or read book Computer Vision – ECCV 2020 written by Andrea Vedaldi and published by Springer Nature. This book was released on 2020-11-11 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Robust Statistics

Download Robust Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119214688
Total Pages : 466 pages
Book Rating : 4.1/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Robust Statistics by : Ricardo A. Maronna

Download or read book Robust Statistics written by Ricardo A. Maronna and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Introduction to Robust Estimation and Hypothesis Testing

Download Introduction to Robust Estimation and Hypothesis Testing PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123869838
Total Pages : 713 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Robust Estimation and Hypothesis Testing by : Rand R. Wilcox

Download or read book Introduction to Robust Estimation and Hypothesis Testing written by Rand R. Wilcox and published by Academic Press. This book was released on 2012-01-12 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--