Real Analysis Through Modern Infinitesimals

Download Real Analysis Through Modern Infinitesimals PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107002028
Total Pages : 587 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Real Analysis Through Modern Infinitesimals by : Nader Vakil

Download or read book Real Analysis Through Modern Infinitesimals written by Nader Vakil and published by Cambridge University Press. This book was released on 2011-02-17 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent, self-contained treatment of the central topics of real analysis employing modern infinitesimals.

A Primer of Infinitesimal Analysis

Download A Primer of Infinitesimal Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521887186
Total Pages : 7 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Primer of Infinitesimal Analysis by : John L. Bell

Download or read book A Primer of Infinitesimal Analysis written by John L. Bell and published by Cambridge University Press. This book was released on 2008-04-07 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.

Infinitesimal

Download Infinitesimal PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1780745338
Total Pages : 317 pages
Book Rating : 4.7/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Infinitesimal by : Amir Alexander

Download or read book Infinitesimal written by Amir Alexander and published by Simon and Schuster. This book was released on 2014-07-03 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: On August 10, 1632, five leading Jesuits convened in a sombre Roman palazzo to pass judgment on a simple idea: that a continuous line is composed of distinct and limitlessly tiny parts. The doctrine would become the foundation of calculus, but on that fateful day the judges ruled that it was forbidden. With the stroke of a pen they set off a war for the soul of the modern world. Amir Alexander takes us from the bloody religious strife of the sixteenth century to the battlefields of the English civil war and the fierce confrontations between leading thinkers like Galileo and Hobbes. The legitimacy of popes and kings, as well as our modern beliefs in human liberty and progressive science, hung in the balance; the answer hinged on the infinitesimal. Pulsing with drama and excitement, Infinitesimal will forever change the way you look at a simple line.

Real Analysis

Download Real Analysis PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 1493940058
Total Pages : 621 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Real Analysis by : Emmanuele DiBenedetto

Download or read book Real Analysis written by Emmanuele DiBenedetto and published by Birkhäuser. This book was released on 2016-09-17 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this classic textbook presents a rigorous and self-contained introduction to real analysis with the goal of providing a solid foundation for future coursework and research in applied mathematics. Written in a clear and concise style, it covers all of the necessary subjects as well as those often absent from standard introductory texts. Each chapter features a “Problems and Complements” section that includes additional material that briefly expands on certain topics within the chapter and numerous exercises for practicing the key concepts. The first eight chapters explore all of the basic topics for training in real analysis, beginning with a review of countable sets before moving on to detailed discussions of measure theory, Lebesgue integration, Banach spaces, functional analysis, and weakly differentiable functions. More topical applications are discussed in the remaining chapters, such as maximal functions, functions of bounded mean oscillation, rearrangements, potential theory, and the theory of Sobolev functions. This second edition has been completely revised and updated and contains a variety of new content and expanded coverage of key topics, such as new exercises on the calculus of distributions, a proof of the Riesz convolution, Steiner symmetrization, and embedding theorems for functions in Sobolev spaces. Ideal for either classroom use or self-study, Real Analysis is an excellent textbook both for students discovering real analysis for the first time and for mathematicians and researchers looking for a useful resource for reference or review. Praise for the First Edition: “[This book] will be extremely useful as a text. There is certainly enough material for a year-long graduate course, but judicious selection would make it possible to use this most appealing book in a one-semester course for well-prepared students.” —Mathematical Reviews

Real and Abstract Analysis

Download Real and Abstract Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642880444
Total Pages : 485 pages
Book Rating : 4.6/5 (428 download)

DOWNLOAD NOW!


Book Synopsis Real and Abstract Analysis by : E. Hewitt

Download or read book Real and Abstract Analysis written by E. Hewitt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is first of all designed as a text for the course usually called "theory of functions of a real variable". This course is at present cus tomarily offered as a first or second year graduate course in United States universities, although there are signs that this sort of analysis will soon penetrate upper division undergraduate curricula. We have included every topic that we think essential for the training of analysts, and we have also gone down a number of interesting bypaths. We hope too that the book will be useful as a reference for mature mathematicians and other scientific workers. Hence we have presented very general and complete versions of a number of important theorems and constructions. Since these sophisticated versions may be difficult for the beginner, we have given elementary avatars of all important theorems, with appro priate suggestions for skipping. We have given complete definitions, ex planations, and proofs throughout, so that the book should be usable for individual study as well as for a course text. Prerequisites for reading the book are the following. The reader is assumed to know elementary analysis as the subject is set forth, for example, in TOM M. ApOSTOL'S Mathematical Analysis [Addison-Wesley Publ. Co., Reading, Mass., 1957], or WALTER RUDIN'S Principles of M athe nd matical Analysis [2 Ed., McGraw-Hill Book Co., New York, 1964].

A Problem Book in Real Analysis

Download A Problem Book in Real Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441912967
Total Pages : 257 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis A Problem Book in Real Analysis by : Asuman G. Aksoy

Download or read book A Problem Book in Real Analysis written by Asuman G. Aksoy and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Education is an admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught. Oscar Wilde, “The Critic as Artist,” 1890. Analysis is a profound subject; it is neither easy to understand nor summarize. However, Real Analysis can be discovered by solving problems. This book aims to give independent students the opportunity to discover Real Analysis by themselves through problem solving. ThedepthandcomplexityofthetheoryofAnalysiscanbeappreciatedbytakingaglimpseatits developmental history. Although Analysis was conceived in the 17th century during the Scienti?c Revolution, it has taken nearly two hundred years to establish its theoretical basis. Kepler, Galileo, Descartes, Fermat, Newton and Leibniz were among those who contributed to its genesis. Deep conceptual changes in Analysis were brought about in the 19th century by Cauchy and Weierstrass. Furthermore, modern concepts such as open and closed sets were introduced in the 1900s. Today nearly every undergraduate mathematics program requires at least one semester of Real Analysis. Often, students consider this course to be the most challenging or even intimidating of all their mathematics major requirements. The primary goal of this book is to alleviate those concerns by systematically solving the problems related to the core concepts of most analysis courses. In doing so, we hope that learning analysis becomes less taxing and thereby more satisfying.

Models for Smooth Infinitesimal Analysis

Download Models for Smooth Infinitesimal Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 147574143X
Total Pages : 401 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Models for Smooth Infinitesimal Analysis by : Ieke Moerdijk

Download or read book Models for Smooth Infinitesimal Analysis written by Ieke Moerdijk and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.

Mathematical Analysis

Download Mathematical Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461207150
Total Pages : 348 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Analysis by : Andrew Browder

Download or read book Mathematical Analysis written by Andrew Browder and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics

Download The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030187071
Total Pages : 320 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics by : John L. Bell

Download or read book The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics written by John L. Bell and published by Springer Nature. This book was released on 2019-09-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.

3000 Years of Analysis

Download 3000 Years of Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303058223X
Total Pages : 706 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis 3000 Years of Analysis by : Thomas Sonar

Download or read book 3000 Years of Analysis written by Thomas Sonar and published by Springer Nature. This book was released on 2020-12-27 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: What exactly is analysis? What are infinitely small or infinitely large quantities? What are indivisibles and infinitesimals? What are real numbers, continuity, the continuum, differentials, and integrals? You’ll find the answers to these and other questions in this unique book! It explains in detail the origins and evolution of this important branch of mathematics, which Euler dubbed the “analysis of the infinite.” A wealth of diagrams, tables, color images and figures serve to illustrate the fascinating history of analysis from Antiquity to the present. Further, the content is presented in connection with the historical and cultural events of the respective epochs, the lives of the scholars seeking knowledge, and insights into the subfields of analysis they created and shaped, as well as the applications in virtually every aspect of modern life that were made possible by analysis.

An Introduction to Modern Analysis

Download An Introduction to Modern Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319124811
Total Pages : 884 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Modern Analysis by : Vicente Montesinos

Download or read book An Introduction to Modern Analysis written by Vicente Montesinos and published by Springer. This book was released on 2015-05-04 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examining the basic principles in real analysis and their applications, this text provides a self-contained resource for graduate and advanced undergraduate courses. It contains independent chapters aimed at various fields of application, enhanced by highly advanced graphics and results explained and supplemented with practical and theoretical exercises. The presentation of the book is meant to provide natural connections to classical fields of applications such as Fourier analysis or statistics. However, the book also covers modern areas of research, including new and seminal results in the area of functional analysis.

The Real Numbers and Real Analysis

Download The Real Numbers and Real Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387721762
Total Pages : 577 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis The Real Numbers and Real Analysis by : Ethan D. Bloch

Download or read book The Real Numbers and Real Analysis written by Ethan D. Bloch and published by Springer Science & Business Media. This book was released on 2011-05-27 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.

Non-standard Analysis

Download Non-standard Analysis PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400884225
Total Pages : 315 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Non-standard Analysis by : Abraham Robinson

Download or read book Non-standard Analysis written by Abraham Robinson and published by Princeton University Press. This book was released on 2016-08-11 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested in non-standard analysis. It treats in rich detail many areas of application, including topology, functions of a real variable, functions of a complex variable, and normed linear spaces, together with problems of boundary layer flow of viscous fluids and rederivations of Saint-Venant's hypothesis concerning the distribution of stresses in an elastic body.

Which Numbers Are Real?

Download Which Numbers Are Real? PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1614441073
Total Pages : 231 pages
Book Rating : 4.6/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Which Numbers Are Real? by : Michael Henle

Download or read book Which Numbers Are Real? written by Michael Henle and published by American Mathematical Soc.. This book was released on 2012-12-31 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everyone knows the real numbers, those fundamental quantities that make possible all of mathematics from high school algebra and Euclidean geometry through the Calculus and beyond; and also serve as the basis for measurement in science, industry, and ordinary life. This book surveys alternative real number systems: systems that generalize and extend the real numbers yet stay close to these properties that make the reals central to mathematics. Alternative real numbers include many different kinds of numbers, for example multidimensional numbers (the complex numbers, the quaternions and others), infinitely small and infinitely large numbers (the hyperreal numbers and the surreal numbers), and numbers that represent positions in games (the surreal numbers). Each system has a well-developed theory, including applications to other areas of mathematics and science, such as physics, the theory of games, multi-dimensional geometry, and formal logic. They are all active areas of current mathematical research and each has unique features, in particular, characteristic methods of proof and implications for the philosophy of mathematics, both highlighted in this book. Alternative real number systems illuminate the central, unifying role of the real numbers and include some exciting and eccentric parts of mathematics. Which Numbers Are Real? Will be of interest to anyone with an interest in numbers, but specifically to upper-level undergraduates, graduate students, and professional mathematicians, particularly college mathematics teachers.

Advanced Calculus (Revised Edition)

Download Advanced Calculus (Revised Edition) PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9814583952
Total Pages : 595 pages
Book Rating : 4.8/5 (145 download)

DOWNLOAD NOW!


Book Synopsis Advanced Calculus (Revised Edition) by : Lynn Harold Loomis

Download or read book Advanced Calculus (Revised Edition) written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Elementary Calculus

Download Elementary Calculus PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 968 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Elementary Calculus by : H. Jerome Keisler

Download or read book Elementary Calculus written by H. Jerome Keisler and published by . This book was released on 1976 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Handbook of Analysis and Its Foundations

Download Handbook of Analysis and Its Foundations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080532993
Total Pages : 907 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Analysis and Its Foundations by : Eric Schechter

Download or read book Handbook of Analysis and Its Foundations written by Eric Schechter and published by Academic Press. This book was released on 1996-10-24 with total page 907 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/