Random Walks on Infinite Graphs and Groups

Download Random Walks on Infinite Graphs and Groups PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521552923
Total Pages : 350 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Random Walks on Infinite Graphs and Groups by : Wolfgang Woess

Download or read book Random Walks on Infinite Graphs and Groups written by Wolfgang Woess and published by Cambridge University Press. This book was released on 2000-02-13 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.

Random Walks on Infinite Groups

Download Random Walks on Infinite Groups PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031256328
Total Pages : 373 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Random Walks on Infinite Groups by : Steven P. Lalley

Download or read book Random Walks on Infinite Groups written by Steven P. Lalley and published by Springer Nature. This book was released on 2023-05-08 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents the basic theory of random walks on infinite, finitely generated groups, along with certain background material in measure-theoretic probability. The main objective is to show how structural features of a group, such as amenability/nonamenability, affect qualitative aspects of symmetric random walks on the group, such as transience/recurrence, speed, entropy, and existence or nonexistence of nonconstant, bounded harmonic functions. The book will be suitable as a textbook for beginning graduate-level courses or independent study by graduate students and advanced undergraduate students in mathematics with a solid grounding in measure theory and a basic familiarity with the elements of group theory. The first seven chapters could also be used as the basis for a short course covering the main results regarding transience/recurrence, decay of return probabilities, and speed. The book has been organized and written so as to be accessible not only to students in probability theory, but also to students whose primary interests are in geometry, ergodic theory, or geometric group theory.

Random Walks on Reductive Groups

Download Random Walks on Reductive Groups PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319477218
Total Pages : 319 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Random Walks on Reductive Groups by : Yves Benoist

Download or read book Random Walks on Reductive Groups written by Yves Benoist and published by Springer. This book was released on 2016-10-20 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.

Handbook of Dynamical Systems

Download Handbook of Dynamical Systems PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0080532845
Total Pages : 1099 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Dynamical Systems by : B. Fiedler

Download or read book Handbook of Dynamical Systems written by B. Fiedler and published by Gulf Professional Publishing. This book was released on 2002-02-21 with total page 1099 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.

Probability on Trees and Networks

Download Probability on Trees and Networks PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316785335
Total Pages : 1023 pages
Book Rating : 4.3/5 (167 download)

DOWNLOAD NOW!


Book Synopsis Probability on Trees and Networks by : Russell Lyons

Download or read book Probability on Trees and Networks written by Russell Lyons and published by Cambridge University Press. This book was released on 2017-01-20 with total page 1023 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike.

Topics in Groups and Geometry

Download Topics in Groups and Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030881091
Total Pages : 468 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Topics in Groups and Geometry by : Tullio Ceccherini-Silberstein

Download or read book Topics in Groups and Geometry written by Tullio Ceccherini-Silberstein and published by Springer Nature. This book was released on 2022-01-01 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov’s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov’s theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research which is still active today. The purpose of the book is to collect these naturally related results together in one place, most of which are scattered throughout the literature, some of them appearing here in book form for the first time. In this way, the connections between these topics are revealed, providing a pleasant introduction to geometric group theory based on ideas surrounding Gromov's theorem. The book will be of interest to mature undergraduate and graduate students in mathematics who are familiar with basic group theory and topology, and who wish to learn more about geometric, analytic, and probabilistic aspects of infinite groups.

Infinite Groups: Geometric, Combinatorial and Dynamical Aspects

Download Infinite Groups: Geometric, Combinatorial and Dynamical Aspects PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764374470
Total Pages : 419 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Infinite Groups: Geometric, Combinatorial and Dynamical Aspects by : Laurent Bartholdi

Download or read book Infinite Groups: Geometric, Combinatorial and Dynamical Aspects written by Laurent Bartholdi and published by Springer Science & Business Media. This book was released on 2006-03-28 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.

Non-homogeneous Random Walks

Download Non-homogeneous Random Walks PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316867366
Total Pages : 385 pages
Book Rating : 4.3/5 (168 download)

DOWNLOAD NOW!


Book Synopsis Non-homogeneous Random Walks by : Mikhail Menshikov

Download or read book Non-homogeneous Random Walks written by Mikhail Menshikov and published by Cambridge University Press. This book was released on 2016-12-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.

Probability on Graphs

Download Probability on Graphs PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108542999
Total Pages : 279 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Probability on Graphs by : Geoffrey Grimmett

Download or read book Probability on Graphs written by Geoffrey Grimmett and published by Cambridge University Press. This book was released on 2018-01-25 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Random Walks and Discrete Potential Theory

Download Random Walks and Discrete Potential Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521773126
Total Pages : 378 pages
Book Rating : 4.7/5 (731 download)

DOWNLOAD NOW!


Book Synopsis Random Walks and Discrete Potential Theory by : M. Picardello

Download or read book Random Walks and Discrete Potential Theory written by M. Picardello and published by Cambridge University Press. This book was released on 1999-11-18 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and interdisciplinary text covering the interplay between random walks and structure theory.

Random Walks and Electric Networks

Download Random Walks and Electric Networks PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1614440220
Total Pages : 174 pages
Book Rating : 4.6/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Random Walks and Electric Networks by : Peter G. Doyle

Download or read book Random Walks and Electric Networks written by Peter G. Doyle and published by American Mathematical Soc.. This book was released on 1984-12-31 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and electric networks looks at the interplay of physics and mathematics in terms of an example—the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level.

Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory

Download Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662028662
Total Pages : 446 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory by : Roberto Fernandez

Download or read book Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory written by Roberto Fernandez and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simple random walks - or equivalently, sums of independent random vari ables - have long been a standard topic of probability theory and mathemat ical physics. In the 1950s, non-Markovian random-walk models, such as the self-avoiding walk,were introduced into theoretical polymer physics, and gradu ally came to serve as a paradigm for the general theory of critical phenomena. In the past decade, random-walk expansions have evolved into an important tool for the rigorous analysis of critical phenomena in classical spin systems and of the continuum limit in quantum field theory. Among the results obtained by random-walk methods are the proof of triviality of the cp4 quantum field theo ryin space-time dimension d (::::) 4, and the proof of mean-field critical behavior for cp4 and Ising models in space dimension d (::::) 4. The principal goal of the present monograph is to present a detailed review of these developments. It is supplemented by a brief excursion to the theory of random surfaces and various applications thereof. This book has grown out of research carried out by the authors mainly from 1982 until the middle of 1985. Our original intention was to write a research paper. However, the writing of such a paper turned out to be a very slow process, partly because of our geographical separation, partly because each of us was involved in other projects that may have appeared more urgent.

Random Graph Dynamics

Download Random Graph Dynamics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139460889
Total Pages : 203 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Random Graph Dynamics by : Rick Durrett

Download or read book Random Graph Dynamics written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-05-31 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.

Expansion in Finite Simple Groups of Lie Type

Download Expansion in Finite Simple Groups of Lie Type PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470421968
Total Pages : 319 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Expansion in Finite Simple Groups of Lie Type by : Terence Tao

Download or read book Expansion in Finite Simple Groups of Lie Type written by Terence Tao and published by American Mathematical Soc.. This book was released on 2015-04-16 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.

The Random-Cluster Model

Download The Random-Cluster Model PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540328912
Total Pages : 392 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis The Random-Cluster Model by : Geoffrey R. Grimmett

Download or read book The Random-Cluster Model written by Geoffrey R. Grimmett and published by Springer Science & Business Media. This book was released on 2006-12-13 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.

Representations of the Infinite Symmetric Group

Download Representations of the Infinite Symmetric Group PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107175550
Total Pages : 169 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Representations of the Infinite Symmetric Group by : Alexei Borodin

Download or read book Representations of the Infinite Symmetric Group written by Alexei Borodin and published by Cambridge University Press. This book was released on 2017 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the modern representation theory of big groups, exploring its connections to probability and algebraic combinatorics.

Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces

Download Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470421941
Total Pages : 164 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces by : F. Dahmani

Download or read book Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces written by F. Dahmani and published by American Mathematical Soc.. This book was released on 2017-01-18 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: he authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, , and the Cremona group. Other examples can be found among groups acting geometrically on spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.