Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Random Walks On Boundary For Solving Pdes
Download Random Walks On Boundary For Solving Pdes full books in PDF, epub, and Kindle. Read online Random Walks On Boundary For Solving Pdes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Random Walks on Boundary for Solving PDEs by : Karl K. Sabelfeld
Download or read book Random Walks on Boundary for Solving PDEs written by Karl K. Sabelfeld and published by Walter de Gruyter. This book was released on 2013-07-05 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents new probabilistic representations for classical boundary value problems of mathematical physics and is the first book devoted to the walk on boundary algorithms. Compared to the well-known Wiener and diffusion path integrals, the trajectories of random walks in this publication are simlated on the boundary of the domain as Markov chains generated by the kernels of the boundary integral equations equivalent to the original boundary value problem. The book opens with an introduction for solving the interior and exterior boundary values for the Laplace and heat equations, which is followed by applying this method to all main boundary value problems of the potential and elasticity theories.
Book Synopsis Random Walks on Boundary for Solving PDEs by : K. K. Sabelfeld
Download or read book Random Walks on Boundary for Solving PDEs written by K. K. Sabelfeld and published by . This book was released on 1994 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Random Walk and the Heat Equation by : Gregory F. Lawler
Download or read book Random Walk and the Heat Equation written by Gregory F. Lawler and published by American Mathematical Soc.. This book was released on 2010-11-22 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.
Book Synopsis Random Walks on Boundary for Solving PDEs by : N. A. Simonov
Download or read book Random Walks on Boundary for Solving PDEs written by N. A. Simonov and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Stochastic Methods for Boundary Value Problems by : Karl K. Sabelfeld
Download or read book Stochastic Methods for Boundary Value Problems written by Karl K. Sabelfeld and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-09-26 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach. The book is written for mathematicians who work in the field of partial differential and integral equations, physicists and engineers dealing with computational methods and applied probability, for students and postgraduates studying mathematical physics and numerical mathematics. Contents: Introduction Random walk algorithms for solving integral equations Random walk-on-boundary algorithms for the Laplace equation Walk-on-boundary algorithms for the heat equation Spatial problems of elasticity Variants of the random walk on boundary for solving stationary potential problems Splitting and survival probabilities in random walk methods and applications A random WOS-based KMC method for electron–hole recombinations Monte Carlo methods for computing macromolecules properties and solving related problems Bibliography
Book Synopsis Large-Scale Scientific Computing by : Ivan Lirkov
Download or read book Large-Scale Scientific Computing written by Ivan Lirkov and published by Springer. This book was released on 2018-01-10 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 11th International Conference on Large-Scale Scientific Computations, LSSC 2017, held in Sozopol, Bulgaria, in June 2017. The 63 revised short papers together with 3 full papers presented were carefully reviewed and selected from 63 submissions. The conference presents results from the following topics: Hierarchical, adaptive, domain decomposition and local refinement methods; Robust preconditioning algorithms; Monte Carlo methods and algorithms; Numerical linear algebra; Control and optimization; Parallel algorithms and performance analysis; Large-scale computations of environmental, biomedical and engineering problems. The chapter 'Parallel Aggregation Based on Compatible Weighted Matching for AMG' is available open access under a CC BY 4.0 license.
Book Synopsis Spherical and Plane Integral Operators for PDEs by : Karl K. Sabelfeld
Download or read book Spherical and Plane Integral Operators for PDEs written by Karl K. Sabelfeld and published by Walter de Gruyter. This book was released on 2013-10-29 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents integral formulations for partial differential equations, with the focus on spherical and plane integral operators. The integral relations are obtained for different elliptic and parabolic equations, and both direct and inverse mean value relations are studied. The derived integral equations are used to construct new numerical methods for solving relevant boundary value problems, both deterministic and stochastic based on probabilistic interpretation of the spherical and plane integral operators.
Book Synopsis Spherical Means for Pdes by : K. Karl Karlovich Sabelfeld
Download or read book Spherical Means for Pdes written by K. Karl Karlovich Sabelfeld and published by VSP. This book was released on 1997 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monographs presents new spherical mean value relations for classical boundary value problems of mathematical physics. The derived spherical mean value relations provide equivalent integral formulations of original boundary value problems. Direct and converse mean value theorems are proved for scalar elliptic equations (the Laplace, Helmholtz and diffusion equations), parabolic equations, high-order elliptic equations (biharmonic and metaharmonic equations), and systems of elliptic equations (the Lami equation, systems of diffusion and elasticity equations). In addition, applications to the random walk on spheres method are given.
Book Synopsis Numerical Methods and Applications by : Todor Boyanov
Download or read book Numerical Methods and Applications written by Todor Boyanov and published by Springer Science & Business Media. This book was released on 2007-02-20 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the 6th International Conference on Numerical Methods and Applications, NMA 2006, held in Borovets, Bulgaria, in August 2006. The 84 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 111 submissions. The papers are organized in topical sections on numerical methods for hyperbolic problems, robust preconditioning solution methods, Monte Carlo and quasi-Monte Carlo for diverse applications, metaheuristics for optimization problems, uncertain/control systems and reliable numerics, interpolation and quadrature processes, large-scale computations in environmental modelling, and contributed talks.
Book Synopsis Numerical Methods and Applications by : Lirkov Ivan Dimov
Download or read book Numerical Methods and Applications written by Lirkov Ivan Dimov and published by Springer. This book was released on 2011-01-27 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Numerical Methods and Applications, NMA 2010, held in Borovets, Bulgaria, in August 2010. The 60 revised full papers presented together with 3 invited papers were carefully reviewed and selected from numerous submissions for inclusion in this book. The papers are organized in topical sections on Monte Carlo and quasi-Monte Carlo methods, environmental modeling, grid computing and applications, metaheuristics for optimization problems, and modeling and simulation of electrochemical processes.
Book Synopsis Random Fields and Stochastic Lagrangian Models by : Karl K. Sabelfeld
Download or read book Random Fields and Stochastic Lagrangian Models written by Karl K. Sabelfeld and published by Walter de Gruyter. This book was released on 2012-12-06 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents advanced stochastic models and simulation methods for random flows and transport of particles by turbulent velocity fields and flows in porous media. Two main classes of models are constructed: (1) turbulent flows are modeled as synthetic random fields which have certain statistics and features mimicing those of turbulent fluid in the regime of interest, and (2) the models are constructed in the form of stochastic differential equations for stochastic Lagrangian trajectories of particles carried by turbulent flows. The book is written for mathematicians, physicists, and engineers studying processes associated with probabilistic interpretation, researchers in applied and computational mathematics, in environmental and engineering sciences dealing with turbulent transport and flows in porous media, as well as nucleation, coagulation, and chemical reaction analysis under fluctuation conditions. It can be of interest for students and post-graduates studying numerical methods for solving stochastic boundary value problems of mathematical physics and dispersion of particles by turbulent flows and flows in porous media.
Book Synopsis First-passage Phenomena And Their Applications by : Ralf Metzler
Download or read book First-passage Phenomena And Their Applications written by Ralf Metzler and published by World Scientific. This book was released on 2014-03-21 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains review articles on recent advances in first-passage phenomena and applications contributed by leading international experts. It is intended for graduate students and researchers who are interested in learning about this intriguing and important topic.
Book Synopsis Partial Differential Equations of Applied Mathematics by : Erich Zauderer
Download or read book Partial Differential Equations of Applied Mathematics written by Erich Zauderer and published by Wiley-Interscience. This book was released on 1998-08-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only comprehensive guide to modeling, characterizing, and solving partial differential equations This classic text by Erich Zauderer provides a comprehensive account of partial differential equations and their applications. Dr. Zauderer develops mathematical models that give rise to partial differential equations and describes classical and modern solution techniques. With an emphasis on practical applications, he makes liberal use of real-world examples, explores both linear and nonlinear problems, and provides approximate as well as exact solutions. He also describes approximation methods for simplifying complicated solutions and for solving linear and nonlinear problems not readily solved by standard methods. The book begins with a demonstration of how the three basic types of equations (parabolic, hyperbolic, and elliptic) can be derived from random walk models. It continues in a less statistical vein to cover an exceptionally broad range of topics, including stabilities, singularities, transform methods, the use of Green's functions, and perturbation and asymptotic treatments. Features that set Partial Differential Equations of Applied Mathematics, Second Edition above all other texts in the field include: Coverage of random walk problems, discontinuous and singular solutions, and perturbation and asymptotic methods More than 800 practice exercises, many of which are fully worked out Numerous up-to-date examples from engineering and the physical sciences Partial Differential Equations of Applied Mathematics, Second Edition is a superior advanced-undergraduate to graduate-level text for students in engineering, the sciences, and applied mathematics. The title is also a valuable working resource for professionals in these fields. Dr. Zauderer received his doctorate in mathematics from the New York University-Courant Institute. Prior to joining the staff of Polytechnic University, he was a Senior Weitzmann Fellow of the Weitzmann Institute of Science in Rehovot, Israel.
Book Synopsis Computational Science — ICCS 2003 by : Peter M.A. Sloot
Download or read book Computational Science — ICCS 2003 written by Peter M.A. Sloot and published by Springer. This book was released on 2003-08-03 with total page 1124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some of the most challenging problems in science and engineering are being addressed by the integration of computation and science, a research ?eld known as computational science. Computational science plays a vital role in fundamental advances in biology, physics, chemistry, astronomy, and a host of other disciplines. This is through the coordination of computation, data management, access to instrumentation, knowledge synthesis, and the use of new devices. It has an impact on researchers and practitioners in the sciences and beyond. The sheer size of many challenges in computational science dictates the use of supercomputing, parallel and distri- ted processing, grid-based processing, advanced visualization and sophisticated algorithms. At the dawn of the 21st century the series of International Conferences on Computational Science (ICCS) was initiated with a ?rst meeting in May 2001 in San Francisco. The success of that meeting motivated the organization of the - cond meeting held in Amsterdam April 21–24, 2002, where over 500 participants pushed the research ?eld further. The International Conference on Computational Science 2003 (ICCS 2003) is the follow-up to these earlier conferences. ICCS 2003 is unique, in that it was a single event held at two di?erent sites almost opposite each other on the globe – Melbourne, Australia and St. Petersburg, Russian Federation. The conference ran on the same dates at both locations and all the presented work was published in a single set of proceedings, which you hold in your hands right now.
Book Synopsis Finite Difference Computing with PDEs by : Hans Petter Langtangen
Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Book Synopsis Monte Carlo Methods for Partial Differential Equations With Applications to Electronic Design Automation by : Wenjian Yu
Download or read book Monte Carlo Methods for Partial Differential Equations With Applications to Electronic Design Automation written by Wenjian Yu and published by Springer Nature. This book was released on 2022-09-02 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is one of the top 10 algorithms in the 20th century. This book is focusing on the Monte Carlo method for solving deterministic partial differential equations (PDEs), especially its application to electronic design automation (EDA) problems. Compared with the traditional method, the Monte Carlo method is more efficient when point values or linear functional of the solution are needed, and has the advantages on scalability, parallelism, and stability of accuracy. This book presents a systematic introduction to the Monte Carlo method for solving major kinds of PDEs, and the detailed explanation of relevant techniques for EDA problems especially the cutting-edge algorithms of random walk based capacitance extraction. It includes about 100 figures and 50 tables, and brings the reader a close look to the newest research results and the sophisticated algorithmic skills in Monte Carlo simulation software.
Book Synopsis Analog and Hybrid Computer Programming by : Bernd Ulmann
Download or read book Analog and Hybrid Computer Programming written by Bernd Ulmann and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-05-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: As classic digital computers are about to reach their physical and architectural boundaries, interest in unconventional approaches to computing, such as quantum and analog computers, is rapidly increasing. For a wide variety of practical applications, analog computers can outperform classic digital computers in terms of both raw computational speed and energy efficiency. This makes them ideally suited a co-processors to digital computers, thus forming hybrid computers. This second edition of "Analog and Hybrid Computer Programming" provides a thorough introduction to the programming of analog and hybrid computers. It contains a wealth of practical examples, ranging from simple problems such as radioactive decay, harmonic oscillators, and chemical reaction kinetics to advanced topics which include the simulation of neurons, chaotic systems such as a double-pendulum simulation and many more. In addition to these examples, it contains a chapter on special functions which can be used as "subroutines" in an analog computer setup.