Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Random Walks And Discrete Potential Theory Cortona 1997
Download Random Walks And Discrete Potential Theory Cortona 1997 full books in PDF, epub, and Kindle. Read online Random Walks And Discrete Potential Theory Cortona 1997 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Random Walks and Discrete Potential Theory by : M. Picardello
Download or read book Random Walks and Discrete Potential Theory written by M. Picardello and published by Cambridge University Press. This book was released on 1999-11-18 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and interdisciplinary text covering the interplay between random walks and structure theory.
Book Synopsis Random Walks and Geometry by : Vadim Kaimanovich
Download or read book Random Walks and Geometry written by Vadim Kaimanovich and published by Walter de Gruyter. This book was released on 2008-08-22 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die jüngsten Entwicklungen zeigen, dass sich Wahrscheinlichkeitsverfahren zu einem sehr wirkungsvollen Werkzeug entwickelt haben, und das auf so unterschiedlichen Gebieten wie statistische Physik, dynamische Systeme, Riemann'sche Geometrie, Gruppentheorie, harmonische Analyse, Graphentheorie und Informatik.
Book Synopsis Probability on Discrete Structures by : Harry Kesten
Download or read book Probability on Discrete Structures written by Harry Kesten and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.
Book Synopsis Potential Theory and Geometry on Lie Groups by : N. Th. Varopoulos
Download or read book Potential Theory and Geometry on Lie Groups written by N. Th. Varopoulos and published by Cambridge University Press. This book was released on 2020-10-22 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complete account of a new classification of connected Lie groups in two classes, including open problems to motivate further study.
Book Synopsis Random Walks, Boundaries and Spectra by : Daniel Lenz
Download or read book Random Walks, Boundaries and Spectra written by Daniel Lenz and published by Springer Science & Business Media. This book was released on 2011-06-16 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings represent the current state of research on the topics 'boundary theory' and 'spectral and probability theory' of random walks on infinite graphs. They are the result of the two workshops held in Styria (Graz and St. Kathrein am Offenegg, Austria) between June 29th and July 5th, 2009. Many of the participants joined both meetings. Even though the perspectives range from very different fields of mathematics, they all contribute with important results to the same wonderful topic from structure theory, which, by extending a quotation of Laurent Saloff-Coste, could be described by 'exploration of groups by random processes'.
Book Synopsis Discrete Geometric Analysis by : Motoko Kotani
Download or read book Discrete Geometric Analysis written by Motoko Kotani and published by American Mathematical Soc.. This book was released on 2004 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collects papers from the proceedings of the first symposium of the Japan Association for Mathematical Sciences. This book covers topics that center around problems of geometric analysis in relation to heat kernels, random walks, and Poisson boundaries on discrete groups, graphs, and other combinatorial objects.
Book Synopsis Sobolev Spaces in Mathematics I by : Vladimir Maz'ya
Download or read book Sobolev Spaces in Mathematics I written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2008-12-02 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.
Book Synopsis Fractals in Graz 2001 by : Peter Grabner
Download or read book Fractals in Graz 2001 written by Peter Grabner and published by Birkhäuser. This book was released on 2012-12-06 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders", we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process.
Book Synopsis Modern Theory of Dynamical Systems by : Anatole Katok
Download or read book Modern Theory of Dynamical Systems written by Anatole Katok and published by American Mathematical Soc.. This book was released on 2017-06-19 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a tribute to one of the founders of modern theory of dynamical systems, the late Dmitry Victorovich Anosov. It contains both original papers and surveys, written by some distinguished experts in dynamics, which are related to important themes of Anosov's work, as well as broadly interpreted further crucial developments in the theory of dynamical systems that followed Anosov's original work. Also included is an article by A. Katok that presents Anosov's scientific biography and a picture of the early development of hyperbolicity theory in its various incarnations, complete and partial, uniform and nonuniform.
Book Synopsis Topics in Geometric Group Theory by : Pierre de la Harpe
Download or read book Topics in Geometric Group Theory written by Pierre de la Harpe and published by University of Chicago Press. This book was released on 2000-10-15 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.
Book Synopsis Fractal Geometry and Stochastics III by : Christoph Bandt
Download or read book Fractal Geometry and Stochastics III written by Christoph Bandt and published by Springer Science & Business Media. This book was released on 2004-07-23 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This up-to-date monograph, providing an up-to-date overview of the field of Hepatitis Prevention and Treatment, includes contributions from internationally recognized experts on viral hepatitis, and covers the current state of knowledge and practice regarding the molecular biology, immunology, biochemistry, pharmacology and clinical aspects of chronic HBV and HCV infection. The book provides the latest information, with sufficient background and discussion of the literature to benefit the newcomer to the field.
Book Synopsis Random Walks and Geometry on Graphs of Exponential Growth by : Bálint Virág
Download or read book Random Walks and Geometry on Graphs of Exponential Growth written by Bálint Virág and published by . This book was released on 2000 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Unimodularity in Randomly Generated Graphs by : Florian Sobieczky
Download or read book Unimodularity in Randomly Generated Graphs written by Florian Sobieczky and published by American Mathematical Soc.. This book was released on 2018-11-20 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Unimodularity in Randomly Generated Graphs, held from October 8–9, 2016, in Denver, Colorado. Unimodularity, a term initially used in locally compact topological groups, is one of the main examples in which the generalization from groups to graphs is successful. The “randomly generated graphs”, which include percolation graphs, random Erdős–Rényi graphs, and graphings of equivalence relations, are much easier to describe if they result as random objects in the context of unimodularity, with respect to either a vertex-transient “host”-graph or a probability measure. This volume tries to give an impression of the various fields in which the notion currently finds strong development and application: percolation theory, point processes, ergodic theory, and dynamical systems.
Book Synopsis Selected Works of Oded Schramm by : Itai Benjamini
Download or read book Selected Works of Oded Schramm written by Itai Benjamini and published by Springer Science & Business Media. This book was released on 2011-08-12 with total page 1199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to the memory of the late Oded Schramm (1961-2008), distinguished mathematician. Throughout his career, Schramm made profound and beautiful contributions to mathematics that will have a lasting influence. In these two volumes, Editors Itai Benjamini and Olle Häggström have collected some of his papers, supplemented with three survey papers by Steffen Rohde, Häggström and Cristophe Garban that further elucidate his work. The papers within are a representative collection that shows the breadth, depth, enthusiasm and clarity of his work, with sections on Geometry, Noise Sensitivity, Random Walks and Graph Limits, Percolation, and finally Schramm-Loewner Evolution. An introduction by the Editors and a comprehensive bibliography of Schramm's publications complete the volume. The book will be of especial interest to researchers in probability and geometry, and in the history of these subjects.
Book Synopsis Arnold's Problems by : Vladimir I. Arnold
Download or read book Arnold's Problems written by Vladimir I. Arnold and published by Springer Science & Business Media. This book was released on 2004-06-24 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vladimir Arnold is one of the most outstanding mathematicians of our time Many of these problems are at the front line of current research
Book Synopsis Geometry, Spectral Theory, Groups, and Dynamics by : Robert Brooks
Download or read book Geometry, Spectral Theory, Groups, and Dynamics written by Robert Brooks and published by American Mathematical Soc.. This book was released on 2005 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains articles based on talks given at the Robert Brooks Memorial Conference on Geometry and Spectral Theory and the Workshop on Groups, Geometry and Dynamics held at Technion - the Israel Institute of Technology (Haifa). Robert Brooks' (1952 - 2002) broad range of mathematical interests is represented in the volume, which is devoted to various aspects of global analysis, spectral theory, the theory of Riemann surfaces, Riemannian and discrete geometry, and numbertheory. A survey of Brooks' work has been written by his close colleague, Peter Buser. Also included in the volume are articles on analytic topics, such as Szego's theorem, and on geometric topics, such as isoperimetric inequalities and symmetries of manifolds. The book is suitable for graduate studentsand researchers interested in various aspects of geometry and global analysis.
Book Synopsis Fractal Geometry and Stochastics VI by : Uta Freiberg
Download or read book Fractal Geometry and Stochastics VI written by Uta Freiberg and published by Springer Nature. This book was released on 2021-03-23 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry. Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation. Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers.