An Invitation to Quantum Cohomology

Download An Invitation to Quantum Cohomology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817644954
Total Pages : 162 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis An Invitation to Quantum Cohomology by : Joachim Kock

Download or read book An Invitation to Quantum Cohomology written by Joachim Kock and published by Springer Science & Business Media. This book was released on 2007-12-27 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves Viewpoint is mostly that of enumerative geometry Emphasis is on examples, heuristic discussions, and simple applications to best convey the intuition behind the subject Ideal for self-study, for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory

From Quantum Cohomology to Integrable Systems

Download From Quantum Cohomology to Integrable Systems PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191606960
Total Pages : 336 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis From Quantum Cohomology to Integrable Systems by : Martin A. Guest

Download or read book From Quantum Cohomology to Integrable Systems written by Martin A. Guest and published by OUP Oxford. This book was released on 2008-03-13 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.

$J$-Holomorphic Curves and Quantum Cohomology

Download $J$-Holomorphic Curves and Quantum Cohomology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821803328
Total Pages : 220 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis $J$-Holomorphic Curves and Quantum Cohomology by : Dusa McDuff

Download or read book $J$-Holomorphic Curves and Quantum Cohomology written by Dusa McDuff and published by American Mathematical Soc.. This book was released on 1994 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: J -holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J -holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov's compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that the quantum multiplication exists and is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten's calculation for Grassmanians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed.

Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces

Download Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821819178
Total Pages : 321 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces by : I︠U︡. I. Manin

Download or read book Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces written by I︠U︡. I. Manin and published by American Mathematical Soc.. This book was released on 1999 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first monograph dedicated to the systematic exposition of the whole variety of topics related to quantum cohomology. The subject first originated in theoretical physics (quantum string theory) and has continued to develop extensively over the last decade. The author's approach to quantum cohomology is based on the notion of the Frobenius manifold. The first part of the book is devoted to this notion and its extensive interconnections with algebraic formalism of operads, differential equations, perturbations, and geometry. In the second part of the book, the author describes the construction of quantum cohomology and reviews the algebraic geometry mechanisms involved in this construction (intersection and deformation theory of Deligne-Artin and Mumford stacks). Yuri Manin is currently the director of the Max-Planck-Institut für Mathematik in Bonn, Germany. He has authored and coauthored 10 monographs and almost 200 research articles in algebraic geometry, number theory, mathematical physics, history of culture, and psycholinguistics. Manin's books, such as Cubic Forms: Algebra, Geometry, and Arithmetic (1974), A Course in Mathematical Logic (1977), Gauge Field Theory and Complex Geometry (1988), Elementary Particles: Mathematics, Physics and Philosophy (1989, with I. Yu. Kobzarev), Topics in Non-commutative Geometry (1991), and Methods of Homological Algebra (1996, with S. I. Gelfand), secured for him solid recognition as an excellent expositor. Undoubtedly the present book will serve mathematicians for many years to come.

Quantum Groups and Quantum Cohomology

Download Quantum Groups and Quantum Cohomology PDF Online Free

Author :
Publisher :
ISBN 13 : 9782856299005
Total Pages : 209 pages
Book Rating : 4.2/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Quantum Groups and Quantum Cohomology by : Davesh Maulik

Download or read book Quantum Groups and Quantum Cohomology written by Davesh Maulik and published by . This book was released on 2019 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Helix Structures in Quantum Cohomology of Fano Varieties

Download Helix Structures in Quantum Cohomology of Fano Varieties PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031690672
Total Pages : 241 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Helix Structures in Quantum Cohomology of Fano Varieties by : Giordano Cotti

Download or read book Helix Structures in Quantum Cohomology of Fano Varieties written by Giordano Cotti and published by Springer Nature. This book was released on with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mirror Symmetry and Algebraic Geometry

Download Mirror Symmetry and Algebraic Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082182127X
Total Pages : 498 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Mirror Symmetry and Algebraic Geometry by : David A. Cox

Download or read book Mirror Symmetry and Algebraic Geometry written by David A. Cox and published by American Mathematical Soc.. This book was released on 1999 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is the first completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem. This title features: numerous examples worked out in detail; an appendix on mathematical physics; an exposition of the algebraic theory of Gromov-Witten invariants and quantum cohomology; and, a proof of the mirror theorem for the quintic threefold.

Geometric and Topological Methods for Quantum Field Theory

Download Geometric and Topological Methods for Quantum Field Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821840622
Total Pages : 272 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Geometric and Topological Methods for Quantum Field Theory by : Sylvie Paycha

Download or read book Geometric and Topological Methods for Quantum Field Theory written by Sylvie Paycha and published by American Mathematical Soc.. This book was released on 2007 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, based on lectures and short communications at a summer school in Villa de Leyva, Colombia (July 2005), offers an introduction to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. It is aimed at graduate students in physics or mathematics who might want insight in the following topics (covered in five survey lectures): Anomalies and noncommutative geometry, Deformation quantisation and Poisson algebras, Topological quantum field theory and orbifolds. These lectures are followed by nine articles on various topics at the borderline of mathematics and physics ranging from quasicrystals to invariant instantons through black holes, and involving a number of mathematical tools borrowed from geometry, algebra and analysis.

Topics in Cohomological Studies of Algebraic Varieties

Download Topics in Cohomological Studies of Algebraic Varieties PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764373423
Total Pages : 321 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Topics in Cohomological Studies of Algebraic Varieties by : Piotr Pragacz

Download or read book Topics in Cohomological Studies of Algebraic Varieties written by Piotr Pragacz and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory. The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Numerous examples will help to understand the mysteries of the cohomological theories presented. The book will be a useful guide to research in the above-mentioned areas. It is adressed to researchers and graduate students in algebraic geometry, algebraic topology, and singularity theory, as well as to mathematicians interested in homogeneous varieties and symmetric functions. Most of the material exposed in the volume has not appeared in books before. Contributors: Paolo Aluffi Michel Brion Anders Skovsted Buch Haibao Duan Ali Ulas Ozgur Kisisel Piotr Pragacz Jörg Schürmann Marek Szyjewski Harry Tamvakis

J-holomorphic Curves and Symplectic Topology

Download J-holomorphic Curves and Symplectic Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821887467
Total Pages : 744 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis J-holomorphic Curves and Symplectic Topology by : Dusa McDuff

Download or read book J-holomorphic Curves and Symplectic Topology written by Dusa McDuff and published by American Mathematical Soc.. This book was released on 2012 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.

Quantum Groups

Download Quantum Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461207835
Total Pages : 540 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Quantum Groups by : Christian Kassel

Download or read book Quantum Groups written by Christian Kassel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

Basic Bundle Theory and K-Cohomology Invariants

Download Basic Bundle Theory and K-Cohomology Invariants PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540749551
Total Pages : 344 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Basic Bundle Theory and K-Cohomology Invariants by : Dale Husemöller

Download or read book Basic Bundle Theory and K-Cohomology Invariants written by Dale Husemöller and published by Springer Science & Business Media. This book was released on 2007-12-18 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.

Geometric and Topological Methods for Quantum Field Theory

Download Geometric and Topological Methods for Quantum Field Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 113948673X
Total Pages : 435 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Geometric and Topological Methods for Quantum Field Theory by : Hernan Ocampo

Download or read book Geometric and Topological Methods for Quantum Field Theory written by Hernan Ocampo and published by Cambridge University Press. This book was released on 2010-04-29 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.

The Moduli Space of Curves

Download The Moduli Space of Curves PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461242649
Total Pages : 570 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis The Moduli Space of Curves by : Robert H. Dijkgraaf

Download or read book The Moduli Space of Curves written by Robert H. Dijkgraaf and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.

Integrability, Quantization, and Geometry: I. Integrable Systems

Download Integrability, Quantization, and Geometry: I. Integrable Systems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470455919
Total Pages : 516 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Integrability, Quantization, and Geometry: I. Integrable Systems by : Sergey Novikov

Download or read book Integrability, Quantization, and Geometry: I. Integrable Systems written by Sergey Novikov and published by American Mathematical Soc.. This book was released on 2021-04-12 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Hochschild Cohomology for Algebras

Download Hochschild Cohomology for Algebras PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470449315
Total Pages : 265 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Hochschild Cohomology for Algebras by : Sarah J. Witherspoon

Download or read book Hochschild Cohomology for Algebras written by Sarah J. Witherspoon and published by American Mathematical Soc.. This book was released on 2019-12-10 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.

Cohomology of Vector Bundles and Syzygies

Download Cohomology of Vector Bundles and Syzygies PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521621977
Total Pages : 404 pages
Book Rating : 4.6/5 (219 download)

DOWNLOAD NOW!


Book Synopsis Cohomology of Vector Bundles and Syzygies by : Jerzy Weyman

Download or read book Cohomology of Vector Bundles and Syzygies written by Jerzy Weyman and published by Cambridge University Press. This book was released on 2003-06-09 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central theme of this book is an exposition of the geometric technique of calculating syzygies. It is written from a point of view of commutative algebra, and without assuming any knowledge of representation theory the calculation of syzygies of determinantal varieties is explained. The starting point is a definition of Schur functors, and these are discussed from both an algebraic and geometric point of view. Then a chapter on various versions of Bott's Theorem leads on to a careful explanation of the technique itself, based on a description of the direct image of a Koszul complex. Applications to determinantal varieties follow, plus there are also chapters on applications of the technique to rank varieties for symmetric and skew symmetric tensors of arbitrary degree, closures of conjugacy classes of nilpotent matrices, discriminants and resultants. Numerous exercises are included to give the reader insight into how to apply this important method.