Proper Group Actions and the Baum-Connes Conjecture

Download Proper Group Actions and the Baum-Connes Conjecture PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034880898
Total Pages : 138 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Proper Group Actions and the Baum-Connes Conjecture by : Guido Mislin

Download or read book Proper Group Actions and the Baum-Connes Conjecture written by Guido Mislin and published by Birkhäuser. This book was released on 2012-12-06 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature. The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.

Proper Group Actions and the Baum-Connes Conjecture

Download Proper Group Actions and the Baum-Connes Conjecture PDF Online Free

Author :
Publisher :
ISBN 13 : 9783034880909
Total Pages : 144 pages
Book Rating : 4.8/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Proper Group Actions and the Baum-Connes Conjecture by : Guido Mislin

Download or read book Proper Group Actions and the Baum-Connes Conjecture written by Guido Mislin and published by . This book was released on 2003-07-23 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to the Baum-Connes Conjecture

Download Introduction to the Baum-Connes Conjecture PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783764367060
Total Pages : 120 pages
Book Rating : 4.3/5 (67 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Baum-Connes Conjecture by : Alain Valette

Download or read book Introduction to the Baum-Connes Conjecture written by Alain Valette and published by Springer Science & Business Media. This book was released on 2002-04-01 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Baum-Connes conjecture is part of A. Connes' non-commutative geometry programme. It can be viewed as a conjectural generalisation of the Atiyah-Singer index theorem, to the equivariant setting (the ambient manifold is not compact, but some compactness is restored by means of a proper, co-compact action of a group "gamma"). Like the Atiyah-Singer theorem, the Baum-Connes conjecture states that a purely topological object coincides with a purely analytical one. For a given group "gamma", the topological object is the equivariant K-homology of the classifying space for proper actions of "gamma", while the analytical object is the K-theory of the C*-algebra associated with "gamma" in its regular representation. The Baum-Connes conjecture implies several other classical conjectures, ranging from differential topology to pure algebra. It has also strong connections with geometric group theory, as the proof of the conjecture for a given group "gamma" usually depends heavily on geometric properties of "gamma". This book is intended for graduate students and researchers in geometry (commutative or not), group theory, algebraic topology, harmonic analysis, and operator algebras. It presents, for the first time in book form, an introduction to the Baum-Connes conjecture. It starts by defining carefully the objects in both sides of the conjecture, then the assembly map which connects them. Thereafter it illustrates the main tool to attack the conjecture (Kasparov's theory), and it concludes with a rough sketch of V. Lafforgue's proof of the conjecture for co-compact lattices in in Spn1, SL(3R), and SL(3C).

Introduction to the Baum-Connes Conjecture

Download Introduction to the Baum-Connes Conjecture PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034881878
Total Pages : 111 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Baum-Connes Conjecture by : Alain Valette

Download or read book Introduction to the Baum-Connes Conjecture written by Alain Valette and published by Birkhäuser. This book was released on 2012-12-06 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Baum-Connes conjecture is part of A. Connes' non-commutative geometry programme. It can be viewed as a conjectural generalisation of the Atiyah-Singer index theorem, to the equivariant setting (the ambient manifold is not compact, but some compactness is restored by means of a proper, co-compact action of a group "gamma"). Like the Atiyah-Singer theorem, the Baum-Connes conjecture states that a purely topological object coincides with a purely analytical one. For a given group "gamma", the topological object is the equivariant K-homology of the classifying space for proper actions of "gamma", while the analytical object is the K-theory of the C*-algebra associated with "gamma" in its regular representation. The Baum-Connes conjecture implies several other classical conjectures, ranging from differential topology to pure algebra. It has also strong connections with geometric group theory, as the proof of the conjecture for a given group "gamma" usually depends heavily on geometric properties of "gamma". This book is intended for graduate students and researchers in geometry (commutative or not), group theory, algebraic topology, harmonic analysis, and operator algebras. It presents, for the first time in book form, an introduction to the Baum-Connes conjecture. It starts by defining carefully the objects in both sides of the conjecture, then the assembly map which connects them. Thereafter it illustrates the main tool to attack the conjecture (Kasparov's theory), and it concludes with a rough sketch of V. Lafforgue's proof of the conjecture for co-compact lattices in in Spn1, SL(3R), and SL(3C).

Topics in Algebraic and Topological K-Theory

Download Topics in Algebraic and Topological K-Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642157084
Total Pages : 322 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Topics in Algebraic and Topological K-Theory by : Paul Frank Baum

Download or read book Topics in Algebraic and Topological K-Theory written by Paul Frank Baum and published by Springer. This book was released on 2010-10-28 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an introductory textbook to K-theory, both algebraic and topological, and to various current research topics within the field, including Kasparov's bivariant K-theory, the Baum-Connes conjecture, the comparison between algebraic and topological K-theory of topological algebras, the K-theory of schemes, and the theory of dg-categories.

Infinite Groups: Geometric, Combinatorial and Dynamical Aspects

Download Infinite Groups: Geometric, Combinatorial and Dynamical Aspects PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764374470
Total Pages : 419 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Infinite Groups: Geometric, Combinatorial and Dynamical Aspects by : Laurent Bartholdi

Download or read book Infinite Groups: Geometric, Combinatorial and Dynamical Aspects written by Laurent Bartholdi and published by Springer Science & Business Media. This book was released on 2006-03-28 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.

K-Theory for Group C*-Algebras and Semigroup C*-Algebras

Download K-Theory for Group C*-Algebras and Semigroup C*-Algebras PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319599151
Total Pages : 325 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis K-Theory for Group C*-Algebras and Semigroup C*-Algebras by : Joachim Cuntz

Download or read book K-Theory for Group C*-Algebras and Semigroup C*-Algebras written by Joachim Cuntz and published by Birkhäuser. This book was released on 2017-10-24 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions. Part of the most basic structural information for such a C*-algebra is contained in its K-theory. The determination of the K-groups of C*-algebras constructed from group or semigroup actions is a particularly challenging problem. Paul Baum and Alain Connes proposed a formula for the K-theory of the reduced crossed product for a group action that would permit, in principle, its computation. By work of many hands, the formula has by now been verified for very large classes of groups and this work has led to the development of a host of new techniques. An important ingredient is Kasparov's bivariant K-theory. More recently, also the C*-algebras generated by the regular representation of a semigroup as well as the crossed products for actions of semigroups by endomorphisms have been studied in more detail. Intriguing examples of actions of such semigroups come from ergodic theory as well as from algebraic number theory. The computation of the K-theory of the corresponding crossed products needs new techniques. In cases of interest the K-theory of the algebras reflects ergodic theoretic or number theoretic properties of the action.

Handbook of Homotopy Theory

Download Handbook of Homotopy Theory PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351251619
Total Pages : 982 pages
Book Rating : 4.3/5 (512 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Homotopy Theory by : Haynes Miller

Download or read book Handbook of Homotopy Theory written by Haynes Miller and published by CRC Press. This book was released on 2020-01-23 with total page 982 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Advances in Noncommutative Geometry

Download Advances in Noncommutative Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030295974
Total Pages : 753 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Advances in Noncommutative Geometry by : Ali Chamseddine

Download or read book Advances in Noncommutative Geometry written by Ali Chamseddine and published by Springer Nature. This book was released on 2020-01-13 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23–April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.

Geometric Group Theory

Download Geometric Group Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764384123
Total Pages : 256 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Geometric Group Theory by : Goulnara N. Arzhantseva

Download or read book Geometric Group Theory written by Goulnara N. Arzhantseva and published by Springer Science & Business Media. This book was released on 2007-09-24 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume has its origins in the Barcelona Conference in Group Theory (July 2005) and the conference "Asymptotic and Probabilistic Methods in Geometric Group Theory" held in Geneva (June 2005). Twelve peer-reviewed research articles written by experts in the field present the most recent results in abstract and geometric group theory. In particular there are two articles by A. Juhász.

An Alpine Anthology of Homotopy Theory

Download An Alpine Anthology of Homotopy Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082183696X
Total Pages : 228 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis An Alpine Anthology of Homotopy Theory by : Dominique Arlettaz

Download or read book An Alpine Anthology of Homotopy Theory written by Dominique Arlettaz and published by American Mathematical Soc.. This book was released on 2006 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second Arolla conference on algebraic topology brought together specialists covering a wide range of homotopy theory and $K$-theory. These proceedings reflect both the variety of talks given at the conference and the diversity of promising research directions in homotopy theory. The articles contained in this volume include significant contributions to classical unstable homotopy theory, model category theory, equivariant homotopy theory, and the homotopy theory of fusionsystems, as well as to $K$-theory of both local fields and $C*$-algebras.

Space – Time – Matter

Download Space – Time – Matter PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110452154
Total Pages : 518 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Space – Time – Matter by : Jochen Brüning

Download or read book Space – Time – Matter written by Jochen Brüning and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-04-09 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space – Time – Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian manifolds with special holonomy – Constructions and global properties Contributions to the spectral geometry of locally homogeneous spaces On conformally covariant differential operators and spectral theory of the holographic Laplacian Moduli and deformations Vector bundles in algebraic geometry and mathematical physics Dyson–Schwinger equations: Fix-point equations for quantum fields Hidden structure in the form factors ofN = 4 SYM On regulating the AdS superstring Constraints on CFT observables from the bootstrap program Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities Yangian symmetry in maximally supersymmetric Yang-Mills theory Wave and Dirac equations on manifolds Geometric analysis on singular spaces Singularities and long-time behavior in nonlinear evolution equations and general relativity

Index Theory of Elliptic Operators, Foliations, and Operator Algebras

Download Index Theory of Elliptic Operators, Foliations, and Operator Algebras PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821850776
Total Pages : 334 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Index Theory of Elliptic Operators, Foliations, and Operator Algebras by : Jerome Kaminker

Download or read book Index Theory of Elliptic Operators, Foliations, and Operator Algebras written by Jerome Kaminker and published by American Mathematical Soc.. This book was released on 1988 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining analysis, geometry, and topology, this volume provides an introduction to current ideas involving the application of $K$-theory of operator algebras to index theory and geometry. In particular, the articles follow two main themes: the use of operator algebras to reflect properties of geometric objects and the application of index theory in settings where the relevant elliptic operators are invertible modulo a $C^*$-algebra other than that of the compact operators. The papers in this collection are the proceedings of the special sessions held at two AMS meetings: the Annual meeting in New Orleans in January 1986, and the Central Section meeting in April 1986. Jonathan Rosenberg's exposition supplies the best available introduction to Kasparov's $KK$-theory and its applications to representation theory and geometry. A striking application of these ideas is found in Thierry Fack's paper, which provides a complete and detailed proof of the Novikov Conjecture for fundamental groups of manifolds of non-positive curvature. Some of the papers involve Connes' foliation algebra and its $K$-theory, while others examine $C^*$-algebras associated to groups and group actions on spaces.

Handbook of K-Theory

Download Handbook of K-Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 354023019X
Total Pages : 1148 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Handbook of K-Theory by : Eric Friedlander

Download or read book Handbook of K-Theory written by Eric Friedlander and published by Springer Science & Business Media. This book was released on 2005-07-18 with total page 1148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.

Representation Theory and Higher Algebraic K-Theory

Download Representation Theory and Higher Algebraic K-Theory PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 142001112X
Total Pages : 442 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Representation Theory and Higher Algebraic K-Theory by : Aderemi Kuku

Download or read book Representation Theory and Higher Algebraic K-Theory written by Aderemi Kuku and published by CRC Press. This book was released on 2016-04-19 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Representation Theory and Higher Algebraic K-Theory is the first book to present higher algebraic K-theory of orders and group rings as well as characterize higher algebraic K-theory as Mackey functors that lead to equivariant higher algebraic K-theory and their relative generalizations. Thus, this book makes computations of higher K-theory of grou

Memòria d'activitats : 2002 = Report of activities : 2002

Download Memòria d'activitats : 2002 = Report of activities : 2002 PDF Online Free

Author :
Publisher : Institut d'Estudis Catalans
ISBN 13 :
Total Pages : 124 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Memòria d'activitats : 2002 = Report of activities : 2002 by :

Download or read book Memòria d'activitats : 2002 = Report of activities : 2002 written by and published by Institut d'Estudis Catalans. This book was released on with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Noncommutative Geometry

Download Noncommutative Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540397027
Total Pages : 364 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Geometry by : Alain Connes

Download or read book Noncommutative Geometry written by Alain Connes and published by Springer. This book was released on 2003-12-15 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.