Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Proceedings Of The Second Annual Conference On Evolutionary Programming
Download Proceedings Of The Second Annual Conference On Evolutionary Programming full books in PDF, epub, and Kindle. Read online Proceedings Of The Second Annual Conference On Evolutionary Programming ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Evolutionary Programming VII by : V.W. Porto
Download or read book Evolutionary Programming VII written by V.W. Porto and published by Springer. This book was released on 1998-08-05 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Evolutionary Programming, EP98, held in San Diego, CA, USA, in March 1998. The volume presents 81 revised full papers selected from an overwhelming number of submissions. The papers are organized in topical sections on economics, emergence and complex systems; issues and innovations in evolutionary computation; applications; evolution-based approaches to engineering design; examining representations and operators; evolutionary computation theory; evolutionary computation and biological modeling; particle swarm; and combinations of evolutionary and neural computation.
Book Synopsis Evolutionary Programming - Proceedings Of The 3rd Annual Conference by : L J Fogel
Download or read book Evolutionary Programming - Proceedings Of The 3rd Annual Conference written by L J Fogel and published by World Scientific. This book was released on 1994-07-26 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main topics covered at this conference include evolutionary programming, evolution strategies and genetic algorithms. Specific research articles investigate applications in control, image processing, neural networks, artificial life and theoretical properties of optimization algorithms based on inspirations from biology. This volume provides researchers and graduate students with an update of developments in the field.
Book Synopsis Evolutionary Computation in Practice by : Tina Yu
Download or read book Evolutionary Computation in Practice written by Tina Yu and published by Springer Science & Business Media. This book was released on 2008-01-04 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is loaded with examples in which computer scientists and engineers have used evolutionary computation - programs that mimic natural evolution - to solve many real-world problems. They aren’t abstract, mathematically intensive papers, but accounts of solving important problems, including tips from the authors on how to avoid common pitfalls, maximize the effectiveness and efficiency of the search process, and many other practical suggestions.
Book Synopsis Evolutionary Programming IV by : John R. McDonnell
Download or read book Evolutionary Programming IV written by John R. McDonnell and published by MIT Press. This book was released on 1995 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012 by : B. V. Babu
Download or read book Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012 written by B. V. Babu and published by Springer. This book was released on 2014-07-08 with total page 1529 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book is based on the research papers presented in the International Conference on Soft Computing for Problem Solving (SocProS 2012), held at JK Lakshmipat University, Jaipur, India. This book provides the latest developments in the area of soft computing and covers a variety of topics, including mathematical modeling, image processing, optimization, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, data mining, etc. The objective of the book is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems that are otherwise difficult to solve by the usual and traditional methods. The book is directed to the researchers and scientists engaged in various fields of Science and Technology.
Book Synopsis Applications of Evolutionary Computation by : Paul Kaufmann (Computer scientist)
Download or read book Applications of Evolutionary Computation written by Paul Kaufmann (Computer scientist) and published by . This book was released on 2019 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 22nd International Conference on Applications of Evolutionary Computation, EvoApplications 2019, held in Leipzig, Germany, in April 2019, co-located with the Evo*2019 events EuroGP, EvoCOP and EvoMUSART. The 44 revised full papers presented were carefully reviewed and selected from 66 submissions. They were organized in topical sections named: Engineering and Real World Applications; Games; General; Image and Signal Processing; Life Sciences; Networks and Distributed Systems; Neuroevolution and Data Analytics; Numerical Optimization: Theory, Benchmarks, and Applications; Robotics. --
Book Synopsis Evolutionary Algorithms by : Lawrence D. Davis
Download or read book Evolutionary Algorithms written by Lawrence D. Davis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications EVOLUTIONARY ALGORITHMS is based on the proceedings of a workshop that was an integral part of the 1996-97 IMA program on "MATHEMATICS IN HIGH-PERFORMANCE COMPUTING." I thank Lawrence David Davis (Tica Associates), Kenneth De Jong (Computer Science, George Mason University), Michael D. Vose (Computer Science, The University of Tennessee), and L. Darrell Whitley (Computer Science, Colorado State University) for their excellent work in organizing the workshop and for editing the proceedings. Further appreciation is ex tended to Donald G. Truhlar (Chemistry and Supercomputing Institute, University of Minnesota) who was also one of the workshop organizers. In addition, I also take this opportunity to thank the National Science Foundation (NSF), Minnesota Supercomputing Institute (MSI), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The IMA Workshop on Evolutionary Algorithms brought together many of the top researchers working in the area of Evolutionary Com putation for a week of intensive interaction. The field of Evolutionary Computation has developed significantly over the past 30 years and today consists a variety of subfields such as genetic algorithms, evolution strate gies, evolutionary programming, and genetic programming, each with their own algorithmic perspectives and goals.
Book Synopsis Applications of Evolutionary Computation by : Pedro A. Castillo
Download or read book Applications of Evolutionary Computation written by Pedro A. Castillo and published by Springer Nature. This book was released on 2021-03-31 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 24th International Conference on Applications of Evolutionary Computation, EvoApplications 2021, held as part of Evo*2021, as Virtual Event, in April 2021, co-located with the Evo*2021 events EuroGP, EvoCOP, and EvoMUSART. The 51 revised full papers presented in this book were carefully reviewed and selected from 78 submissions. The papers cover a wide spectrum of topics, ranging from applications of evolutionary computation; applications of deep bioinspired algorithms; soft computing applied to games; machine learning and AI in digital healthcare and personalized medicine; evolutionary computation in image analysis, signal processing and pattern recognition; evolutionary machine learning; parallel and distributed systems; and applications of nature inspired computing for sustainability and development.
Book Synopsis Introduction to Evolutionary Computing by : A.E. Eiben
Download or read book Introduction to Evolutionary Computing written by A.E. Eiben and published by Springer Science & Business Media. This book was released on 2007-08-06 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Book Synopsis Advances in Genetic Programming by : Kenneth E. Kinnear (Jr.)
Download or read book Advances in Genetic Programming written by Kenneth E. Kinnear (Jr.) and published by MIT Press. This book was released on 1994 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in manu of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public-domain code is available, and on how to become part of the active genetic programming community via electronic mail.
Book Synopsis Genetic Programming III by : John R. Koza
Download or read book Genetic Programming III written by John R. Koza and published by Morgan Kaufmann. This book was released on 1999 with total page 1516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic programming (GP) is a method for getting a computer to solve a problem by telling it what needs to be done instead of how to do it. Koza, Bennett, Andre, and Keane present genetically evolved solutions to dozens of problems of design, control, classification, system identification, and computational molecular biology. Among the solutions are 14 results competitive with human-produced results, including 10 rediscoveries of previously patented inventions.
Book Synopsis Genetic Programming and Data Structures by : William B. Langdon
Download or read book Genetic Programming and Data Structures written by William B. Langdon and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computers that `program themselves' has long been an aim of computer scientists. Recently genetic programming (GP) has started to show its promise by automatically evolving programs. Indeed in a small number of problems GP has evolved programs whose performance is similar to or even slightly better than that of programs written by people. The main thrust of GP has been to automatically create functions. While these can be of great use they contain no memory and relatively little work has addressed automatic creation of program code including stored data. This issue is the main focus of Genetic Programming, and Data Structures: Genetic Programming + Data Structures = Automatic Programming!. This book is motivated by the observation from software engineering that data abstraction (e.g., via abstract data types) is essential in programs created by human programmers. This book shows that abstract data types can be similarly beneficial to the automatic production of programs using GP. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! shows how abstract data types (stacks, queues and lists) can be evolved using genetic programming, demonstrates how GP can evolve general programs which solve the nested brackets problem, recognises a Dyck context free language, and implements a simple four function calculator. In these cases, an appropriate data structure is beneficial compared to simple indexed memory. This book also includes a survey of GP, with a critical review of experiments with evolving memory, and reports investigations of real world electrical network maintenance scheduling problems that demonstrate that Genetic Algorithms can find low cost viable solutions to such problems. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! should be of direct interest to computer scientists doing research on genetic programming, genetic algorithms, data structures, and artificial intelligence. In addition, this book will be of interest to practitioners working in all of these areas and to those interested in automatic programming.
Book Synopsis Genetic Programming and Data Structures by : W.B. Langdon
Download or read book Genetic Programming and Data Structures written by W.B. Langdon and published by Springer Science & Business Media. This book was released on 1998-04-30 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computers that `program themselves' has long been an aim of computer scientists. Recently genetic programming (GP) has started to show its promise by automatically evolving programs. Indeed in a small number of problems GP has evolved programs whose performance is similar to or even slightly better than that of programs written by people. The main thrust of GP has been to automatically create functions. While these can be of great use they contain no memory and relatively little work has addressed automatic creation of program code including stored data. This issue is the main focus of Genetic Programming, and Data Structures: Genetic Programming + Data Structures = Automatic Programming!. This book is motivated by the observation from software engineering that data abstraction (e.g., via abstract data types) is essential in programs created by human programmers. This book shows that abstract data types can be similarly beneficial to the automatic production of programs using GP. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! shows how abstract data types (stacks, queues and lists) can be evolved using genetic programming, demonstrates how GP can evolve general programs which solve the nested brackets problem, recognises a Dyck context free language, and implements a simple four function calculator. In these cases, an appropriate data structure is beneficial compared to simple indexed memory. This book also includes a survey of GP, with a critical review of experiments with evolving memory, and reports investigations of real world electrical network maintenance scheduling problems that demonstrate that Genetic Algorithms can find low cost viable solutions to such problems. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! should be of direct interest to computer scientists doing research on genetic programming, genetic algorithms, data structures, and artificial intelligence. In addition, this book will be of interest to practitioners working in all of these areas and to those interested in automatic programming.
Book Synopsis Foundations of Genetic Programming by : William B. Langdon
Download or read book Foundations of Genetic Programming written by William B. Langdon and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is one of the only books to provide a complete and coherent review of the theory of genetic programming (GP). In doing so, it provides a coherent consolidation of recent work on the theoretical foundations of GP. A concise introduction to GP and genetic algorithms (GA) is followed by a discussion of fitness landscapes and other theoretical approaches to natural and artificial evolution. Having surveyed early approaches to GP theory it presents new exact schema analysis, showing that it applies to GP as well as to the simpler GAs. New results on the potentially infinite number of possible programs are followed by two chapters applying these new techniques.
Book Synopsis Genetic and Evolutionary Computation by : Stephen L. Smith
Download or read book Genetic and Evolutionary Computation written by Stephen L. Smith and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic and Evolutionary Computation: Medical Applications provides an overview of the range of GEC techniques being applied to medicine and healthcare in a context that is relevant not only for existing GEC practitioners but also those from other disciplines, particularly health professionals. There is rapidly increasing interest in applying evolutionary computation to problems in medicine, but to date no text that introduces evolutionary computation in a medical context. By explaining the basic introductory theory, typical application areas and detailed implementation in one coherent volume, this book will appeal to a wide audience from software developers to medical scientists. Centred around a set of nine case studies on the application of GEC to different areas of medicine, the book offers an overview of applications of GEC to medicine, describes applications in which GEC is used to analyse medical images and data sets, derive advanced models, and suggest diagnoses and treatments, finally providing hints about possible future advancements of genetic and evolutionary computation in medicine. Explores the rapidly growing area of genetic and evolutionary computation in context of its viable and exciting payoffs in the field of medical applications. Explains the underlying theory, typical applications and detailed implementation. Includes general sections about the applications of GEC to medicine and their expected future developments, as well as specific sections on applications of GEC to medical imaging, analysis of medical data sets, advanced modelling, diagnosis and treatment. Features a wide range of tables, illustrations diagrams and photographs.
Book Synopsis Unsupervised Learning by : Matthew Kyan
Download or read book Unsupervised Learning written by Matthew Kyan and published by John Wiley & Sons. This book was released on 2014-05-02 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new approach to unsupervised learning Evolving technologies have brought about an explosion of information in recent years, but the question of how such information might be effectively harvested, archived, and analyzed remains a monumental challenge—for the processing of such information is often fraught with the need for conceptual interpretation: a relatively simple task for humans, yet an arduous one for computers. Inspired by the relative success of existing popular research on self-organizing neural networks for data clustering and feature extraction, Unsupervised Learning: A Dynamic Approach presents information within the family of generative, self-organizing maps, such as the self-organizing tree map (SOTM) and the more advanced self-organizing hierarchical variance map (SOHVM). It covers a series of pertinent, real-world applications with regard to the processing of multimedia data—from its role in generic image processing techniques, such as the automated modeling and removal of impulse noise in digital images, to problems in digital asset management and its various roles in feature extraction, visual enhancement, segmentation, and analysis of microbiological image data. Self-organization concepts and applications discussed include: Distance metrics for unsupervised clustering Synaptic self-amplification and competition Image retrieval Impulse noise removal Microbiological image analysis Unsupervised Learning: A Dynamic Approach introduces a new family of unsupervised algorithms that have a basis in self-organization, making it an invaluable resource for researchers, engineers, and scientists who want to create systems that effectively model oppressive volumes of data with little or no user intervention.
Book Synopsis Advances in Genetic Programming by : Kenneth E. Kinnear
Download or read book Advances in Genetic Programming written by Kenneth E. Kinnear and published by MIT Press. This book was released on 1994 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in manu of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public-domain code is available, and on how to become part of the active genetic programming community via electronic mail.