Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Probabilistic Methods For High Dimensional Signal Processing
Download Probabilistic Methods For High Dimensional Signal Processing full books in PDF, epub, and Kindle. Read online Probabilistic Methods For High Dimensional Signal Processing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis High-Dimensional Probability by : Roman Vershynin
Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Book Synopsis High-Dimensional Statistics by : Martin J. Wainwright
Download or read book High-Dimensional Statistics written by Martin J. Wainwright and published by Cambridge University Press. This book was released on 2019-02-21 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.
Book Synopsis High-Dimensional Data Analysis with Low-Dimensional Models by : John Wright
Download or read book High-Dimensional Data Analysis with Low-Dimensional Models written by John Wright and published by Cambridge University Press. This book was released on 2022-01-13 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.
Book Synopsis Introduction to High-Dimensional Statistics by : Christophe Giraud
Download or read book Introduction to High-Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.
Book Synopsis An Introduction to Statistical Signal Processing by : Robert M. Gray
Download or read book An Introduction to Statistical Signal Processing written by Robert M. Gray and published by Cambridge University Press. This book was released on 2004-12-02 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.
Book Synopsis High-Dimensional Optimization and Probability by : Ashkan Nikeghbali
Download or read book High-Dimensional Optimization and Probability written by Ashkan Nikeghbali and published by Springer Nature. This book was released on 2022-08-04 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our modern society. The discussion presents modern, state-of-the-art, research results and advances in areas including non-convex optimization, decentralized distributed convex optimization, topics on surrogate-based reduced dimension global optimization in process systems engineering, the projection of a point onto a convex set, optimal sampling for learning sparse approximations in high dimensions, the split feasibility problem, higher order embeddings, codifferentials and quasidifferentials of the expectation of nonsmooth random integrands, adjoint circuit chains associated with a random walk, analysis of the trade-off between sample size and precision in truncated ordinary least squares, spatial deep learning, efficient location-based tracking for IoT devices using compressive sensing and machine learning techniques, and nonsmooth mathematical programs with vanishing constraints in Banach spaces. The book is a valuable source for graduate students as well as researchers working on Optimization, Probability and their various interconnections with a variety of other areas. Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Book Synopsis The Mathematics of Data by : Michael W. Mahoney
Download or read book The Mathematics of Data written by Michael W. Mahoney and published by American Mathematical Soc.. This book was released on 2018-11-15 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nothing provided
Book Synopsis Multidimensional Signal, Image, and Video Processing and Coding by : John W. Woods
Download or read book Multidimensional Signal, Image, and Video Processing and Coding written by John W. Woods and published by Academic Press. This book was released on 2011-05-31 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidimensional Signal, Image, and Video Processing and Coding gives a concise introduction to both image and video processing, providing a balanced coverage between theory, applications and standards. It gives an introduction to both 2-D and 3-D signal processing theory, supported by an introduction to random processes and some essential results from information theory, providing the necessary foundation for a full understanding of the image and video processing concepts that follow. A significant new feature is the explanation of practical network coding methods for image and video transmission. There is also coverage of new approaches such as: super-resolution methods, non-local processing, and directional transforms. Multidimensional Signal, Image, and Video Processing and Coding also has on-line support that contains many short MATLAB programs that complement examples and exercises on multidimensional signal, image, and video processing. There are numerous short video clips showing applications in video processing and coding, plus a copy of the vidview video player for playing .yuv video files on a Windows PC and an illustration of the effect of packet loss on H.264/AVC coded bitstreams. New to this edition: - New appendices on random processes, information theory - New coverage of image analysis – edge detection, linking, clustering, and segmentation - Expanded coverage on image sensing and perception, including color spaces - Now summarizes the new MPEG coding standards: scalable video coding (SVC) and multiview video coding (MVC), in addition to coverage of H.264/AVC - Updated video processing material including new example on scalable video coding and more material on object- and region-based video coding - More on video coding for networks including practical network coding (PNC), highlighting the significant advantages of PNC for both video downloading and streaming - New coverage of super-resolution methods for image and video - Only R&D level tutorial that gives an integrated treatment of image and video processing - topics that are interconnected - New chapters on introductory random processes, information theory, and image enhancement and analysis - Coverage and discussion of the latest standards in video coding: H.264/AVC and the new scalable video standard (SVC)
Book Synopsis High Dimensional Probability VII by : Christian Houdré
Download or read book High Dimensional Probability VII written by Christian Houdré and published by Birkhäuser. This book was released on 2016-09-21 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects selected papers from the 7th High Dimensional Probability meeting held at the Institut d'Études Scientifiques de Cargèse (IESC) in Corsica, France. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, and random graphs. The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenomena.
Book Synopsis Approaching (Almost) Any Machine Learning Problem by : Abhishek Thakur
Download or read book Approaching (Almost) Any Machine Learning Problem written by Abhishek Thakur and published by Abhishek Thakur. This book was released on 2020-07-04 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub
Book Synopsis Annual Research Briefs ... by : Center for Turbulence Research (U.S.)
Download or read book Annual Research Briefs ... written by Center for Turbulence Research (U.S.) and published by . This book was released on 2009 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Bayesian Signal Processing by : James V. Candy
Download or read book Bayesian Signal Processing written by James V. Candy and published by John Wiley & Sons. This book was released on 2016-07-12 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.
Book Synopsis Analysis of Multivariate and High-Dimensional Data by : Inge Koch
Download or read book Analysis of Multivariate and High-Dimensional Data written by Inge Koch and published by Cambridge University Press. This book was released on 2014 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern approach integrates classical and contemporary methods, fusing theory and practice and bridging the gap to statistical learning.
Book Synopsis Foundations of Signal Processing by : Martin Vetterli
Download or read book Foundations of Signal Processing written by Martin Vetterli and published by Cambridge University Press. This book was released on 2014-09-04 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localization, the limitations of uncertainty, and computational costs. It includes over 160 homework problems and over 220 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, including Mathematica® resources and interactive demonstrations.
Book Synopsis Handbook of Computational and Numerical Methods in Finance by : Svetlozar T. Rachev
Download or read book Handbook of Computational and Numerical Methods in Finance written by Svetlozar T. Rachev and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of numerical methods in finance has recently emerged as a new discipline at the intersection of probability theory, finance, and numerical analysis. The methods employed bridge the gap between financial theory and computational practice, and provide solutions for complex problems that are difficult to solve by traditional analytical methods. Although numerical methods in finance have been studied intensively in recent years, many theoretical and practical financial aspects have yet to be explored. This volume presents current research and survey articles focusing on various numerical methods in finance. The book is designed for the academic community and will also serve professional investors.
Book Synopsis Probabilistic Methods in Telecommunications by : Benedikt Jahnel
Download or read book Probabilistic Methods in Telecommunications written by Benedikt Jahnel and published by Springer Nature. This book was released on 2020-06-17 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic modeling and analysis of spatial telecommunication systems have never been more important than they are today. In particular, it is an essential research area for designing and developing next-generation communication networks that are based on multihop message transmission technology. These lecture notes provide valuable insights into the underlying mathematical discipline, stochastic geometry, introducing the theory, mathematical models and basic concepts. They also discuss the latest applications of the theory to telecommunication systems. The text covers several of the most fundamental aspects of quality of service: connectivity, coverage, interference, random environments, and propagation of malware. It especially highlights two important limiting scenarios of large spatial systems: the high-density limit and the ergodic limit. The book also features an analysis of extreme events and their probabilities based on the theory of large deviations. Lastly, it includes a large number of exercises offering ample opportunities for independent self-study.
Book Synopsis Foundations of Data Science by : Avrim Blum
Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.