Probabilistic and Biologically Inspired Feature Representations

Download Probabilistic and Biologically Inspired Feature Representations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031018222
Total Pages : 89 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic and Biologically Inspired Feature Representations by : Michael Felsberg

Download or read book Probabilistic and Biologically Inspired Feature Representations written by Michael Felsberg and published by Springer Nature. This book was released on 2022-05-31 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the title "Probabilistic and Biologically Inspired Feature Representations," this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife—they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an age of deep learning, they provide a good compromise between hand-designed descriptors and a-priori structureless feature spaces as seen in the layers of deep networks.

Probabilistic and Biologically Inspired Feature Representations

Download Probabilistic and Biologically Inspired Feature Representations PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1681730243
Total Pages : 105 pages
Book Rating : 4.6/5 (817 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic and Biologically Inspired Feature Representations by : Michael Felsberg

Download or read book Probabilistic and Biologically Inspired Feature Representations written by Michael Felsberg and published by Morgan & Claypool Publishers. This book was released on 2018-05-29 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the title "Probabilistic and Biologically Inspired Feature Representations," this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife—they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an age of deep learning, they provide a good compromise between hand-designed descriptors and a-priori structureless feature spaces as seen in the layers of deep networks.

Tenth International Conference on Applications and Techniques in Cyber Intelligence (ICATCI 2022)

Download Tenth International Conference on Applications and Techniques in Cyber Intelligence (ICATCI 2022) PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031288939
Total Pages : 775 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Tenth International Conference on Applications and Techniques in Cyber Intelligence (ICATCI 2022) by : Jemal H. Abawajy

Download or read book Tenth International Conference on Applications and Techniques in Cyber Intelligence (ICATCI 2022) written by Jemal H. Abawajy and published by Springer Nature. This book was released on 2023-03-29 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents innovative ideas, cutting-edge findings, and novel techniques, methods, and applications in a broad range of cybersecurity and cyberthreat intelligence areas. As our society becomes smarter, there is a corresponding need to secure our cyberfuture. The book describes approaches and findings that are of interest to business professionals and governments seeking to secure our data and underpin infrastructures, as well as to individual users.

Graph Representation Learning

Download Graph Representation Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015886
Total Pages : 141 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Graph Representation Learning by : William L. William L. Hamilton

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Advanced Methods and Deep Learning in Computer Vision

Download Advanced Methods and Deep Learning in Computer Vision PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128221496
Total Pages : 584 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Advanced Methods and Deep Learning in Computer Vision by : E. R. Davies

Download or read book Advanced Methods and Deep Learning in Computer Vision written by E. R. Davies and published by Academic Press. This book was released on 2021-11-09 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses

Computational Texture and Patterns

Download Computational Texture and Patterns PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031018230
Total Pages : 99 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Computational Texture and Patterns by : Kristin J. Dana

Download or read book Computational Texture and Patterns written by Kristin J. Dana and published by Springer Nature. This book was released on 2022-05-31 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.

Computer Vision in the Infrared Spectrum

Download Computer Vision in the Infrared Spectrum PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031018265
Total Pages : 128 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision in the Infrared Spectrum by : Michael Teutsch

Download or read book Computer Vision in the Infrared Spectrum written by Michael Teutsch and published by Springer Nature. This book was released on 2022-06-01 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human visual perception is limited to the visual-optical spectrum. Machine vision is not. Cameras sensitive to the different infrared spectra can enhance the abilities of autonomous systems and visually perceive the environment in a holistic way. Relevant scene content can be made visible especially in situations, where sensors of other modalities face issues like a visual-optical camera that needs a source of illumination. As a consequence, not only human mistakes can be avoided by increasing the level of automation, but also machine-induced errors can be reduced that, for example, could make a self-driving car crash into a pedestrian under difficult illumination conditions. Furthermore, multi-spectral sensor systems with infrared imagery as one modality are a rich source of information and can provably increase the robustness of many autonomous systems. Applications that can benefit from utilizing infrared imagery range from robotics to automotive and from biometrics to surveillance. In this book, we provide a brief yet concise introduction to the current state-of-the-art of computer vision and machine learning in the infrared spectrum. Based on various popular computer vision tasks such as image enhancement, object detection, or object tracking, we first motivate each task starting from established literature in the visual-optical spectrum. Then, we discuss the differences between processing images and videos in the visual-optical spectrum and the various infrared spectra. An overview of the current literature is provided together with an outlook for each task. Furthermore, available and annotated public datasets and common evaluation methods and metrics are presented. In a separate chapter, popular applications that can greatly benefit from the use of infrared imagery as a data source are presented and discussed. Among them are automatic target recognition, video surveillance, or biometrics including face recognition. Finally, we conclude with recommendations for well-fitting sensor setups and data processing algorithms for certain computer vision tasks. We address this book to prospective researchers and engineers new to the field but also to anyone who wants to get introduced to the challenges and the approaches of computer vision using infrared images or videos. Readers will be able to start their work directly after reading the book supported by a highly comprehensive backlog of recent and relevant literature as well as related infrared datasets including existing evaluation frameworks. Together with consistently decreasing costs for infrared cameras, new fields of application appear and make computer vision in the infrared spectrum a great opportunity to face nowadays scientific and engineering challenges.

Visual Domain Adaptation in the Deep Learning Era

Download Visual Domain Adaptation in the Deep Learning Era PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031791754
Total Pages : 182 pages
Book Rating : 4.0/5 (317 download)

DOWNLOAD NOW!


Book Synopsis Visual Domain Adaptation in the Deep Learning Era by : Gabriela Csurka

Download or read book Visual Domain Adaptation in the Deep Learning Era written by Gabriela Csurka and published by Springer Nature. This book was released on 2022-06-06 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving problems with deep neural networks typically relies on massive amounts of labeled training data to achieve high performance. While in many situations huge volumes of unlabeled data can be and often are generated and available, the cost of acquiring data labels remains high. Transfer learning (TL), and in particular domain adaptation (DA), has emerged as an effective solution to overcome the burden of annotation, exploiting the unlabeled data available from the target domain together with labeled data or pre-trained models from similar, yet different source domains. The aim of this book is to provide an overview of such DA/TL methods applied to computer vision, a field whose popularity has increased significantly in the last few years. We set the stage by revisiting the theoretical background and some of the historical shallow methods before discussing and comparing different domain adaptation strategies that exploit deep architectures for visual recognition. We introduce the space of self-training-based methods that draw inspiration from the related fields of deep semi-supervised and self-supervised learning in solving the deep domain adaptation. Going beyond the classic domain adaptation problem, we then explore the rich space of problem settings that arise when applying domain adaptation in practice such as partial or open-set DA, where source and target data categories do not fully overlap, continuous DA where the target data comes as a stream, and so on. We next consider the least restrictive setting of domain generalization (DG), as an extreme case where neither labeled nor unlabeled target data are available during training. Finally, we close by considering the emerging area of learning-to-learn and how it can be applied to further improve existing approaches to cross domain learning problems such as DA and DG.

Person Re-Identification with Limited Supervision

Download Person Re-Identification with Limited Supervision PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031018257
Total Pages : 86 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Person Re-Identification with Limited Supervision by : Rameswar Panda

Download or read book Person Re-Identification with Limited Supervision written by Rameswar Panda and published by Springer Nature. This book was released on 2022-06-01 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: Person re-identification is the problem of associating observations of targets in different non-overlapping cameras. Most of the existing learning-based methods have resulted in improved performance on standard re-identification benchmarks, but at the cost of time-consuming and tediously labeled data. Motivated by this, learning person re-identification models with limited to no supervision has drawn a great deal of attention in recent years. In this book, we provide an overview of some of the literature in person re-identification, and then move on to focus on some specific problems in the context of person re-identification with limited supervision in multi-camera environments. We expect this to lead to interesting problems for researchers to consider in the future, beyond the conventional fully supervised setup that has been the framework for a lot of work in person re-identification. Chapter 1 starts with an overview of the problems in person re-identification and the major research directions. We provide an overview of the prior works that align most closely with the limited supervision theme of this book. Chapter 2 demonstrates how global camera network constraints in the form of consistency can be utilized for improving the accuracy of camera pair-wise person re-identification models and also selecting a minimal subset of image pairs for labeling without compromising accuracy. Chapter 3 presents two methods that hold the potential for developing highly scalable systems for video person re-identification with limited supervision. In the one-shot setting where only one tracklet per identity is labeled, the objective is to utilize this small labeled set along with a larger unlabeled set of tracklets to obtain a re-identification model. Another setting is completely unsupervised without requiring any identity labels. The temporal consistency in the videos allows us to infer about matching objects across the cameras with higher confidence, even with limited to no supervision. Chapter 4 investigates person re-identification in dynamic camera networks. Specifically, we consider a novel problem that has received very little attention in the community but is critically important for many applications where a new camera is added to an existing group observing a set of targets. We propose two possible solutions for on-boarding new camera(s) dynamically to an existing network using transfer learning with limited additional supervision. Finally, Chapter 5 concludes the book by highlighting the major directions for future research.

Multi-Modal Face Presentation Attack Detection

Download Multi-Modal Face Presentation Attack Detection PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031018249
Total Pages : 76 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Multi-Modal Face Presentation Attack Detection by : Jun Wan

Download or read book Multi-Modal Face Presentation Attack Detection written by Jun Wan and published by Springer Nature. This book was released on 2022-05-31 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last ten years, face biometric research has been intensively studied by the computer vision community. Face recognition systems have been used in mobile, banking, and surveillance systems. For face recognition systems, face spoofing attack detection is a crucial stage that could cause severe security issues in government sectors. Although effective methods for face presentation attack detection have been proposed so far, the problem is still unsolved due to the difficulty in the design of features and methods that can work for new spoofing attacks. In addition, existing datasets for studying the problem are relatively small which hinders the progress in this relevant domain. In order to attract researchers to this important field and push the boundaries of the state of the art on face anti-spoofing detection, we organized the Face Spoofing Attack Workshop and Competition at CVPR 2019, an event part of the ChaLearn Looking at People Series. As part of this event, we released the largest multi-modal face anti-spoofing dataset so far, the CASIA-SURF benchmark. The workshop reunited many researchers from around the world and the challenge attracted more than 300 teams. Some of the novel methodologies proposed in the context of the challenge achieved state-of-the-art performance. In this manuscript, we provide a comprehensive review on face anti-spoofing techniques presented in this joint event and point out directions for future research on the face anti-spoofing field.

Biologically Inspired Cognitive Architectures 2018

Download Biologically Inspired Cognitive Architectures 2018 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331999316X
Total Pages : 377 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Biologically Inspired Cognitive Architectures 2018 by : Alexei V. Samsonovich

Download or read book Biologically Inspired Cognitive Architectures 2018 written by Alexei V. Samsonovich and published by Springer. This book was released on 2018-08-23 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on original approaches intended to support the development of biologically inspired cognitive architectures. It bridges together different disciplines, from classical artificial intelligence to linguistics, from neuro- and social sciences to design and creativity, among others. The chapters, based on contributions presented at the Ninth Annual Meeting of the BICA Society, held in on August 23-24, 2018, in Prague, Czech Republic, discuss emerging methods, theories and ideas towards the realization of general-purpose humanlike artificial intelligence or fostering a better understanding of the ways the human mind works. All in all, the book provides engineers, mathematicians, psychologists, computer scientists and other experts with a timely snapshot of recent research and a source of inspiration for future developments in the broadly intended areas of artificial intelligence and biological inspiration.

Bio-Inspired and Nanoscale Integrated Computing

Download Bio-Inspired and Nanoscale Integrated Computing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470116595
Total Pages : 582 pages
Book Rating : 4.4/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Bio-Inspired and Nanoscale Integrated Computing by : Mary Mehrnoosh Eshaghian-Wilner

Download or read book Bio-Inspired and Nanoscale Integrated Computing written by Mary Mehrnoosh Eshaghian-Wilner and published by John Wiley & Sons. This book was released on 2009-06-22 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings the latest advances in nanotechnology and biology to computing This pioneering book demonstrates how nanotechnology can create even faster, denser computing architectures and algorithms. Furthermore, it draws from the latest advances in biology with a focus on bio-inspired computing at the nanoscale, bringing to light several new and innovative applications such as nanoscale implantable biomedical devices and neural networks. Bio-Inspired and Nanoscale Integrated Computing features an expert team of interdisciplinary authors who offer readers the benefit of their own breakthroughs in integrated computing as well as a thorough investigation and analyses of the literature. Carefully edited, the book begins with an introductory chapter providing a general overview of the field. It ends with a chapter setting forth the common themes that tie the chapters together as well as a forecast of emerging avenues of research. Among the important topics addressed in the book are modeling of nano devices, quantum computing, quantum dot cellular automata, dielectrophoretic reconfigurable nano architectures, multilevel and three-dimensional nanomagnetic recording, spin-wave architectures and algorithms, fault-tolerant nanocomputing, molecular computing, self-assembly of supramolecular nanostructures, DNA nanotechnology and computing, nanoscale DNA sequence matching, medical nanorobotics, heterogeneous nanostructures for biomedical diagnostics, biomimetic cortical nanocircuits, bio-applications of carbon nanotubes, and nanoscale image processing. Readers in electrical engineering, computer science, and computational biology will gain new insights into how bio-inspired and nanoscale devices can be used to design the next generation of enhanced integrated circuits.

Biologically Inspired Techniques in Many-Criteria Decision Making

Download Biologically Inspired Techniques in Many-Criteria Decision Making PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030390330
Total Pages : 268 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Biologically Inspired Techniques in Many-Criteria Decision Making by : Satchidananda Dehuri

Download or read book Biologically Inspired Techniques in Many-Criteria Decision Making written by Satchidananda Dehuri and published by Springer Nature. This book was released on 2020-01-21 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses many-criteria decision-making (MCDM), a process used to find a solution in an environment with several criteria. In many real-world problems, there are several different objectives that need to be taken into account. Solving these problems is a challenging task and requires careful consideration. In real applications, often simple and easy to understand methods are used; as a result, the solutions accepted by decision makers are not always optimal solutions. On the other hand, algorithms that would provide better outcomes are very time consuming. The greatest challenge facing researchers is how to create effective algorithms that will yield optimal solutions with low time complexity. Accordingly, many current research efforts are focused on the implementation of biologically inspired algorithms (BIAs), which are well suited to solving uni-objective problems. This book introduces readers to state-of-the-art developments in biologically inspired techniques and their applications, with a major emphasis on the MCDM process. To do so, it presents a wide range of contributions on e.g. BIAs, MCDM, nature-inspired algorithms, multi-criteria optimization, machine learning and soft computing.

Computer Analysis of Images and Patterns

Download Computer Analysis of Images and Patterns PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642236782
Total Pages : 598 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Computer Analysis of Images and Patterns by : Ainhoa Berciano

Download or read book Computer Analysis of Images and Patterns written by Ainhoa Berciano and published by Springer. This book was released on 2011-08-19 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two volume set LNCS 6854/6855 constitutes the refereed proceedings of the International Conference on Computer Analysis of Images and Patterns, CAIP 2011, which took place in Seville, Spain, August 29-31, 2011. The 138 papers presented together with 2 invited talks were carefully reviewed and selected from 286 submissions. The papers are organized in topical section on: motion analysis, image and shape models, segmentation and grouping, shape recovery, kernel methods, medical imaging, structural pattern recognition, Biometrics, image and video processing, calibration; and tracking and stereo vision.

Hierarchical Object Representations in the Visual Cortex and Computer Vision

Download Hierarchical Object Representations in the Visual Cortex and Computer Vision PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889197980
Total Pages : 292 pages
Book Rating : 4.8/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Hierarchical Object Representations in the Visual Cortex and Computer Vision by : Antonio Rodríguez-Sánchez

Download or read book Hierarchical Object Representations in the Visual Cortex and Computer Vision written by Antonio Rodríguez-Sánchez and published by Frontiers Media SA. This book was released on 2016-06-08 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 40 years, neurobiology and computational neuroscience has proved that deeper understanding of visual processes in humans and non-human primates can lead to important advancements in computational perception theories and systems. One of the main difficulties that arises when designing automatic vision systems is developing a mechanism that can recognize - or simply find - an object when faced with all the possible variations that may occur in a natural scene, with the ease of the primate visual system. The area of the brain in primates that is dedicated at analyzing visual information is the visual cortex. The visual cortex performs a wide variety of complex tasks by means of simple operations. These seemingly simple operations are applied to several layers of neurons organized into a hierarchy, the layers representing increasingly complex, abstract intermediate processing stages. In this Research Topic we propose to bring together current efforts in neurophysiology and computer vision in order 1) To understand how the visual cortex encodes an object from a starting point where neurons respond to lines, bars or edges to the representation of an object at the top of the hierarchy that is invariant to illumination, size, location, viewpoint, rotation and robust to occlusions and clutter; and 2) How the design of automatic vision systems benefit from that knowledge to get closer to human accuracy, efficiency and robustness to variations.

Biologically Inspired Computer Vision

Download Biologically Inspired Computer Vision PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527680497
Total Pages : 480 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Biologically Inspired Computer Vision by : Gabriel Cristobal

Download or read book Biologically Inspired Computer Vision written by Gabriel Cristobal and published by John Wiley & Sons. This book was released on 2015-08-31 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the state-of-the-art imaging technologies became more and more advanced, yielding scientific data at unprecedented detail and volume, the need to process and interpret all the data has made image processing and computer vision increasingly important. Sources of data that have to be routinely dealt with today's applications include video transmission, wireless communication, automatic fingerprint processing, massive databanks, non-weary and accurate automatic airport screening, robust night vision, just to name a few. Multidisciplinary inputs from other disciplines such as physics, computational neuroscience, cognitive science, mathematics, and biology will have a fundamental impact in the progress of imaging and vision sciences. One of the advantages of the study of biological organisms is to devise very different type of computational paradigms by implementing a neural network with a high degree of local connectivity. This is a comprehensive and rigorous reference in the area of biologically motivated vision sensors. The study of biologically visual systems can be considered as a two way avenue. On the one hand, biological organisms can provide a source of inspiration for new computational efficient and robust vision models and on the other hand machine vision approaches can provide new insights for understanding biological visual systems. Along the different chapters, this book covers a wide range of topics from fundamental to more specialized topics, including visual analysis based on a computational level, hardware implementation, and the design of new more advanced vision sensors. The last two sections of the book provide an overview of a few representative applications and current state of the art of the research in this area. This makes it a valuable book for graduate, Master, PhD students and also researchers in the field.

Image and Graphics

Download Image and Graphics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319716077
Total Pages : 733 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Image and Graphics by : Yao Zhao

Download or read book Image and Graphics written by Yao Zhao and published by Springer. This book was released on 2017-12-29 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume set LNCS 10666, 10667, and 10668 constitutes the refereed conference proceedings of the 9th International Conference on Image and Graphics, ICIG 2017, held in Shanghai, China, in September 2017. The 172 full papers were selected from 370 submissions and focus on advances of theory, techniques and algorithms as well as innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking.