Practical Data Analysis

Download Practical Data Analysis PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785286668
Total Pages : 330 pages
Book Rating : 4.7/5 (852 download)

DOWNLOAD NOW!


Book Synopsis Practical Data Analysis by : Hector Cuesta

Download or read book Practical Data Analysis written by Hector Cuesta and published by Packt Publishing Ltd. This book was released on 2016-09-30 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to obtaining, transforming, exploring, and analyzing data using Python, MongoDB, and Apache Spark About This Book Learn to use various data analysis tools and algorithms to classify, cluster, visualize, simulate, and forecast your data Apply Machine Learning algorithms to different kinds of data such as social networks, time series, and images A hands-on guide to understanding the nature of data and how to turn it into insight Who This Book Is For This book is for developers who want to implement data analysis and data-driven algorithms in a practical way. It is also suitable for those without a background in data analysis or data processing. Basic knowledge of Python programming, statistics, and linear algebra is assumed. What You Will Learn Acquire, format, and visualize your data Build an image-similarity search engine Generate meaningful visualizations anyone can understand Get started with analyzing social network graphs Find out how to implement sentiment text analysis Install data analysis tools such as Pandas, MongoDB, and Apache Spark Get to grips with Apache Spark Implement machine learning algorithms such as classification or forecasting In Detail Beyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service. This book explains the basic data algorithms without the theoretical jargon, and you'll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark. Style and approach This is a hands-on guide to data analysis and data processing. The concrete examples are explained with simple code and accessible data.

Practical Real-time Data Processing and Analytics

Download Practical Real-time Data Processing and Analytics PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787289869
Total Pages : 354 pages
Book Rating : 4.7/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Practical Real-time Data Processing and Analytics by : Shilpi Saxena

Download or read book Practical Real-time Data Processing and Analytics written by Shilpi Saxena and published by Packt Publishing Ltd. This book was released on 2017-09-28 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to help you tackle different real-time data processing and analytics problems using the best tools for each scenario About This Book Learn about the various challenges in real-time data processing and use the right tools to overcome them This book covers popular tools and frameworks such as Spark, Flink, and Apache Storm to solve all your distributed processing problems A practical guide filled with examples, tips, and tricks to help you perform efficient Big Data processing in real-time Who This Book Is For If you are a Java developer who would like to be equipped with all the tools required to devise an end-to-end practical solution on real-time data streaming, then this book is for you. Basic knowledge of real-time processing would be helpful, and knowing the fundamentals of Maven, Shell, and Eclipse would be great. What You Will Learn Get an introduction to the established real-time stack Understand the key integration of all the components Get a thorough understanding of the basic building blocks for real-time solution designing Garnish the search and visualization aspects for your real-time solution Get conceptually and practically acquainted with real-time analytics Be well equipped to apply the knowledge and create your own solutions In Detail With the rise of Big Data, there is an increasing need to process large amounts of data continuously, with a shorter turnaround time. Real-time data processing involves continuous input, processing and output of data, with the condition that the time required for processing is as short as possible. This book covers the majority of the existing and evolving open source technology stack for real-time processing and analytics. You will get to know about all the real-time solution aspects, from the source to the presentation to persistence. Through this practical book, you'll be equipped with a clear understanding of how to solve challenges on your own. We'll cover topics such as how to set up components, basic executions, integrations, advanced use cases, alerts, and monitoring. You'll be exposed to the popular tools used in real-time processing today such as Apache Spark, Apache Flink, and Storm. Finally, you will put your knowledge to practical use by implementing all of the techniques in the form of a practical, real-world use case. By the end of this book, you will have a solid understanding of all the aspects of real-time data processing and analytics, and will know how to deploy the solutions in production environments in the best possible manner. Style and Approach In this practical guide to real-time analytics, each chapter begins with a basic high-level concept of the topic, followed by a practical, hands-on implementation of each concept, where you can see the working and execution of it. The book is written in a DIY style, with plenty of practical use cases, well-explained code examples, and relevant screenshots and diagrams.

Practical Data Analysis in Chemistry

Download Practical Data Analysis in Chemistry PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080548830
Total Pages : 341 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Practical Data Analysis in Chemistry by : Marcel Maeder

Download or read book Practical Data Analysis in Chemistry written by Marcel Maeder and published by Elsevier. This book was released on 2007-08-10 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of modern instruments are computerised and provide incredible amounts of data. Methods that take advantage of the flood of data are now available; importantly they do not emulate 'graph paper analyses' on the computer. Modern computational methods are able to give us insights into data, but analysis or data fitting in chemistry requires the quantitative understanding of chemical processes. The results of this analysis allows the modelling and prediction of processes under new conditions, therefore saving on extensive experimentation. Practical Data Analysis in Chemistry exemplifies every aspect of theory applicable to data analysis using a short program in a Matlab or Excel spreadsheet, enabling the reader to study the programs, play with them and observe what happens. Suitable data are generated for each example in short routines, this ensuring a clear understanding of the data structure. Chapter 2 includes a brief introduction to matrix algebra and its implementation in Matlab and Excel while Chapter 3 covers the theory required for the modelling of chemical processes. This is followed by an introduction to linear and non-linear least-squares fitting, each demonstrated with typical applications. Finally Chapter 5 comprises a collection of several methods for model-free data analyses.* Includes a solid introduction to the simulation of equilibrium processes and the simulation of complex kinetic processes.* Provides examples of routines that are easily adapted to the processes investigated by the reader* 'Model-based' analysis (linear and non-linear regression) and 'model-free' analysis are covered

Practical Data Analysis Cookbook

Download Practical Data Analysis Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783558512
Total Pages : 384 pages
Book Rating : 4.7/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Practical Data Analysis Cookbook by : Tomasz Drabas

Download or read book Practical Data Analysis Cookbook written by Tomasz Drabas and published by Packt Publishing Ltd. This book was released on 2016-04-29 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 60 practical recipes on data exploration and analysis About This Book Clean dirty data, extract accurate information, and explore the relationships between variables Forecast the output of an electric plant and the water flow of American rivers using pandas, NumPy, Statsmodels, and scikit-learn Find and extract the most important features from your dataset using the most efficient Python libraries Who This Book Is For If you are a beginner or intermediate-level professional who is looking to solve your day-to-day, analytical problems with Python, this book is for you. Even with no prior programming and data analytics experience, you will be able to finish each recipe and learn while doing so. What You Will Learn Read, clean, transform, and store your data usng Pandas and OpenRefine Understand your data and explore the relationships between variables using Pandas and D3.js Explore a variety of techniques to classify and cluster outbound marketing campaign calls data of a bank using Pandas, mlpy, NumPy, and Statsmodels Reduce the dimensionality of your dataset and extract the most important features with pandas, NumPy, and mlpy Predict the output of a power plant with regression models and forecast water flow of American rivers with time series methods using pandas, NumPy, Statsmodels, and scikit-learn Explore social interactions and identify fraudulent activities with graph theory concepts using NetworkX and Gephi Scrape Internet web pages using urlib and BeautifulSoup and get to know natural language processing techniques to classify movies ratings using NLTK Study simulation techniques in an example of a gas station with agent-based modeling In Detail Data analysis is the process of systematically applying statistical and logical techniques to describe and illustrate, condense and recap, and evaluate data. Its importance has been most visible in the sector of information and communication technologies. It is an employee asset in almost all economy sectors. This book provides a rich set of independent recipes that dive into the world of data analytics and modeling using a variety of approaches, tools, and algorithms. You will learn the basics of data handling and modeling, and will build your skills gradually toward more advanced topics such as simulations, raw text processing, social interactions analysis, and more. First, you will learn some easy-to-follow practical techniques on how to read, write, clean, reformat, explore, and understand your data—arguably the most time-consuming (and the most important) tasks for any data scientist. In the second section, different independent recipes delve into intermediate topics such as classification, clustering, predicting, and more. With the help of these easy-to-follow recipes, you will also learn techniques that can easily be expanded to solve other real-life problems such as building recommendation engines or predictive models. In the third section, you will explore more advanced topics: from the field of graph theory through natural language processing, discrete choice modeling to simulations. You will also get to expand your knowledge on identifying fraud origin with the help of a graph, scrape Internet websites, and classify movies based on their reviews. By the end of this book, you will be able to efficiently use the vast array of tools that the Python environment has to offer. Style and approach This hands-on recipe guide is divided into three sections that tackle and overcome real-world data modeling problems faced by data analysts/scientist in their everyday work. Each independent recipe is written in an easy-to-follow and step-by-step fashion.

Practical Seismic Data Analysis

Download Practical Seismic Data Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107728851
Total Pages : 509 pages
Book Rating : 4.1/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Practical Seismic Data Analysis by : Hua-Wei Zhou

Download or read book Practical Seismic Data Analysis written by Hua-Wei Zhou and published by Cambridge University Press. This book was released on 2014-01-23 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern introduction to seismic data processing in both exploration and global geophysics demonstrates practical applications through real data and tutorial examples. The underlying physics and mathematics of the various seismic analysis methods are presented, giving students an appreciation of their limitations and potential for creating models of the sub-surface. Designed for a one-semester course, this textbook discusses key techniques within the context of the world's ever increasing need for petroleum and mineral resources - equipping upper undergraduate and graduate students with the tools they need for a career in industry. Examples presented throughout the text allow students to compare different methods and can be demonstrated using the instructor's software of choice. Exercises at the end of sections enable students to check their understanding and put the theory into practice and are complemented by solutions for instructors and additional case study examples online to complete the learning package.

Practical Statistics for Data Scientists

Download Practical Statistics for Data Scientists PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491952911
Total Pages : 322 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Practical Statistics for Data Scientists by : Peter Bruce

Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Practical Natural Language Processing

Download Practical Natural Language Processing PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 149205402X
Total Pages : 455 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Natural Language Processing by : Sowmya Vajjala

Download or read book Practical Natural Language Processing written by Sowmya Vajjala and published by O'Reilly Media. This book was released on 2020-06-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective

Practical Data Science for Information Professionals

Download Practical Data Science for Information Professionals PDF Online Free

Author :
Publisher : Facet Publishing
ISBN 13 : 1783303441
Total Pages : 200 pages
Book Rating : 4.7/5 (833 download)

DOWNLOAD NOW!


Book Synopsis Practical Data Science for Information Professionals by : David Stuart

Download or read book Practical Data Science for Information Professionals written by David Stuart and published by Facet Publishing. This book was released on 2020-07-24 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Data Science for Information Professionals provides an accessible introduction to a potentially complex field, providing readers with an overview of data science and a framework for its application. It provides detailed examples and analysis on real data sets to explore the basics of the subject in three principle areas: clustering and social network analysis; predictions and forecasts; and text analysis and mining. As well as highlighting a wealth of user-friendly data science tools, the book also includes some example code in two of the most popular programming languages (R and Python) to demonstrate the ease with which the information professional can move beyond the graphical user interface and achieve significant analysis with just a few lines of code. After reading, readers will understand: · the growing importance of data science · the role of the information professional in data science · some of the most important tools and methods that information professionals can use. Bringing together the growing importance of data science and the increasing role of information professionals in the management and use of data, Practical Data Science for Information Professionals will provide a practical introduction to the topic specifically designed for the information community. It will appeal to librarians and information professionals all around the world, from large academic libraries to small research libraries. By focusing on the application of open source software, it aims to reduce barriers for readers to use the lessons learned within.

Practical Guide to Clinical Data Management

Download Practical Guide to Clinical Data Management PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439848319
Total Pages : 296 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Practical Guide to Clinical Data Management by : Susanne Prokscha

Download or read book Practical Guide to Clinical Data Management written by Susanne Prokscha and published by CRC Press. This book was released on 2011-10-26 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The management of clinical data, from its collection during a trial to its extraction for analysis, has become a critical element in the steps to prepare a regulatory submission and to obtain approval to market a treatment. Groundbreaking on its initial publication nearly fourteen years ago, and evolving with the field in each iteration since then,

Data Management Using Stata

Download Data Management Using Stata PDF Online Free

Author :
Publisher : Stata Press
ISBN 13 : 9781597183185
Total Pages : 512 pages
Book Rating : 4.1/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Data Management Using Stata by : Michael N Mitchell

Download or read book Data Management Using Stata written by Michael N Mitchell and published by Stata Press. This book was released on 2020-06-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of Data Management Using Stata focuses on tasks that bridge the gap between raw data and statistical analysis. It has been updated throughout to reflect new data management features that have been added over the last 10 years. Such features include the ability to read and write a wide variety of file formats, the ability to write highly customized Excel files, the ability to have multiple Stata datasets open at once, and the ability to store and manipulate string variables stored as Unicode. Further, this new edition includes a new chapter illustrating how to write Stata programs for solving data management tasks. As in the original edition, the chapters are organized by data management areas: reading and writing datasets, cleaning data, labeling datasets, creating variables, combining datasets, processing observations across subgroups, changing the shape of datasets, and programming for data management. Within each chapter, each section is a self-contained lesson illustrating a particular data management task (for instance, creating date variables or automating error checking) via examples. This modular design allows you to quickly identify and implement the most common data management tasks without having to read background information first. In addition to the "nuts and bolts" examples, author Michael Mitchell alerts users to common pitfalls (and how to avoid them) and provides strategic data management advice. This book can be used as a quick reference for solving problems as they arise or can be read as a means for learning comprehensive data management skills. New users will appreciate this book as a valuable way to learn data management, while experienced users will find this information to be handy and time saving--there is a good chance that even the experienced user will learn some new tricks.

Data Mining

Download Data Mining PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080890369
Total Pages : 665 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Data Mining by : Ian H. Witten

Download or read book Data Mining written by Ian H. Witten and published by Elsevier. This book was released on 2011-02-03 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Practical Data Migration

Download Practical Data Migration PDF Online Free

Author :
Publisher : BCS, The Chartered Institute
ISBN 13 : 1906124841
Total Pages : 269 pages
Book Rating : 4.9/5 (61 download)

DOWNLOAD NOW!


Book Synopsis Practical Data Migration by : Johny Morris

Download or read book Practical Data Migration written by Johny Morris and published by BCS, The Chartered Institute. This book was released on 2012 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for executives and practitioners tasked with the movement of data from old systems to a new repository. It uses a series of steps developed in real life situations that will get the reader from an empty new system to one that is working and backed by the user population. Recent figures suggest that nearly 40% of Data Migration projects are over time, over budget or fail entirely. Using this proven methodology will vastly increase the chances of achieving a successful migration.

Practical Data Science with SAP

Download Practical Data Science with SAP PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492046418
Total Pages : 333 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Data Science with SAP by : Greg Foss

Download or read book Practical Data Science with SAP written by Greg Foss and published by O'Reilly Media. This book was released on 2019-09-18 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to fuse today's data science tools and techniques with your SAP enterprise resource planning (ERP) system. With this practical guide, SAP veterans Greg Foss and Paul Modderman demonstrate how to use several data analysis tools to solve interesting problems with your SAP data. Data engineers and scientists will explore ways to add SAP data to their analysis processes, while SAP business analysts will learn practical methods for answering questions about the business. By focusing on grounded explanations of both SAP processes and data science tools, this book gives data scientists and business analysts powerful methods for discovering deep data truths. You'll explore: Examples of how data analysis can help you solve several SAP challenges Natural language processing for unlocking the secrets in text Data science techniques for data clustering and segmentation Methods for detecting anomalies in your SAP data Data visualization techniques for making your data come to life

Text Data Management and Analysis

Download Text Data Management and Analysis PDF Online Free

Author :
Publisher : Morgan & Claypool
ISBN 13 : 1970001186
Total Pages : 634 pages
Book Rating : 4.9/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Text Data Management and Analysis by : ChengXiang Zhai

Download or read book Text Data Management and Analysis written by ChengXiang Zhai and published by Morgan & Claypool. This book was released on 2016-06-30 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic. This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.

Practical Data Mining

Download Practical Data Mining PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439868379
Total Pages : 304 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Practical Data Mining by : Jr., Monte F. Hancock

Download or read book Practical Data Mining written by Jr., Monte F. Hancock and published by CRC Press. This book was released on 2011-12-19 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Used by corporations, industry, and government to inform and fuel everything from focused advertising to homeland security, data mining can be a very useful tool across a wide range of applications. Unfortunately, most books on the subject are designed for the computer scientist and statistical illuminati and leave the reader largely adrift in tech

Practical Data Science Cookbook

Download Practical Data Science Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178712326X
Total Pages : 428 pages
Book Rating : 4.7/5 (871 download)

DOWNLOAD NOW!


Book Synopsis Practical Data Science Cookbook by : Prabhanjan Tattar

Download or read book Practical Data Science Cookbook written by Prabhanjan Tattar and published by Packt Publishing Ltd. This book was released on 2017-06-29 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 85 recipes to help you complete real-world data science projects in R and Python About This Book Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data Get beyond the theory and implement real-world projects in data science using R and Python Easy-to-follow recipes will help you understand and implement the numerical computing concepts Who This Book Is For If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python. What You Will Learn Learn and understand the installation procedure and environment required for R and Python on various platforms Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python Build a predictive model and an exploratory model Analyze the results of your model and create reports on the acquired data Build various tree-based methods and Build random forest In Detail As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use. Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis—R and Python. Style and approach This step-by-step guide to data science is full of hands-on examples of real-world data science tasks. Each recipe focuses on a particular task involved in the data science pipeline, ranging from readying the dataset to analytics and visualization

Practical Time Series Analysis

Download Practical Time Series Analysis PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178829419X
Total Pages : 238 pages
Book Rating : 4.7/5 (882 download)

DOWNLOAD NOW!


Book Synopsis Practical Time Series Analysis by : Dr. Avishek Pal

Download or read book Practical Time Series Analysis written by Dr. Avishek Pal and published by Packt Publishing Ltd. This book was released on 2017-09-28 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step by Step guide filled with real world practical examples. About This Book Get your first experience with data analysis with one of the most powerful types of analysis—time-series. Find patterns in your data and predict the future pattern based on historical data. Learn the statistics, theory, and implementation of Time-series methods using this example-rich guide Who This Book Is For This book is for anyone who wants to analyze data over time and/or frequency. A statistical background is necessary to quickly learn the analysis methods. What You Will Learn Understand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science project Develop an understanding of loading, exploring, and visualizing time-series data Explore auto-correlation and gain knowledge of statistical techniques to deal with non-stationarity time series Take advantage of exponential smoothing to tackle noise in time series data Learn how to use auto-regressive models to make predictions using time-series data Build predictive models on time series using techniques based on auto-regressive moving averages Discover recent advancements in deep learning to build accurate forecasting models for time series Gain familiarity with the basics of Python as a powerful yet simple to write programming language In Detail Time Series Analysis allows us to analyze data which is generated over a period of time and has sequential interdependencies between the observations. This book describes special mathematical tricks and techniques which are geared towards exploring the internal structures of time series data and generating powerful descriptive and predictive insights. Also, the book is full of real-life examples of time series and their analyses using cutting-edge solutions developed in Python. The book starts with descriptive analysis to create insightful visualizations of internal structures such as trend, seasonality and autocorrelation. Next, the statistical methods of dealing with autocorrelation and non-stationary time series are described. This is followed by exponential smoothing to produce meaningful insights from noisy time series data. At this point, we shift focus towards predictive analysis and introduce autoregressive models such as ARMA and ARIMA for time series forecasting. Later, powerful deep learning methods are presented, to develop accurate forecasting models for complex time series, and under the availability of little domain knowledge. All the topics are illustrated with real-life problem scenarios and their solutions by best-practice implementations in Python. The book concludes with the Appendix, with a brief discussion of programming and solving data science problems using Python. Style and approach This book takes the readers from the basic to advance level of Time series analysis in a very practical and real world use cases.